Found problems: 4776
1992 IMO Shortlist, 6
Let $\,{\mathbb{R}}\,$ denote the set of all real numbers. Find all functions $\,f: {\mathbb{R}}\rightarrow {\mathbb{R}}\,$ such that \[ f\left( x^{2}+f(y)\right) =y+\left( f(x)\right) ^{2}\hspace{0.2in}\text{for all}\,x,y\in \mathbb{R}. \]
1988 China Team Selection Test, 2
Find all functions $f: \mathbb{Q} \mapsto \mathbb{C}$ satisfying
(i) For any $x_1, x_2, \ldots, x_{1988} \in \mathbb{Q}$, $f(x_{1} + x_{2} + \ldots + x_{1988}) = f(x_1)f(x_2) \ldots f(x_{1988})$.
(ii) $\overline{f(1988)}f(x) = f(1988)\overline{f(x)}$ for all $x \in \mathbb{Q}$.
2017 AMC 12/AHSME, 7
The functions $\sin(x)$ and $\cos(x)$ are periodic with least period $2\pi$. What is the least period of the function $\cos(\sin(x))$?
$\textbf{(A)}\ \frac{\pi}{2}\qquad\textbf{(B)}\ \pi\qquad\textbf{(C)}\ 2\pi\qquad\textbf{(D)}\ 4\pi\qquad\textbf{(E)}$ It's not periodic.
2006 Moldova Team Selection Test, 3
Let $a,b,c$ be sides of a triangle and $p$ its semiperimeter. Show that
$a\sqrt{\frac{(p-b)(p-c)}{bc}}+b \sqrt{\frac{(p-c)(p-a)}{ac}}+c\sqrt{\frac{(p-a)(p-b)}{ab}}\geq p$
2013 Romania National Olympiad, 4
Consider a nonzero integer number $n$ and the function $f:\mathbb{N}\to \mathbb{N}$ by
\[ f(x) = \begin{cases}
\frac{x}{2} & \text{if } x \text{ is even} \\
\frac{x-1}{2} + 2^{n-1} & \text{if } x \text{ is odd}
\end{cases}.
\] Determine the set: \[
A = \{ x\in \mathbb{N} \mid \underbrace{\left( f\circ f\circ ....\circ f \right)}_{n\ f\text{'s}}\left( x \right)=x \}.
\]
2020 Bangladesh Mathematical Olympiad National, Problem 6
$f$ is a one-to-one function from the set of positive integers to itself such that $$f(xy) = f(x) × f(y)$$ Find the minimum possible value of $f(2020)$.
2013 Romania Team Selection Test, 3
Determine all injective functions defined on the set of positive integers into itself satisfying the following condition: If $S$ is a finite set of positive integers such that $\sum\limits_{s\in S}\frac{1}{s}$ is an integer, then $\sum\limits_{s\in S}\frac{1}{f\left( s\right) }$ is also an integer.
2012 ELMO Shortlist, 8
Find all functions $f : \mathbb{Q} \to \mathbb{R}$ such that $f(x)f(y)f(x+y) = f(xy)(f(x) + f(y))$ for all $x,y\in\mathbb{Q}$.
[i]Sammy Luo and Alex Zhu.[/i]
2016 Middle European Mathematical Olympiad, 4
Find all $f : \mathbb{N} \to \mathbb{N} $ such that $f(a) + f(b)$ divides $2(a + b - 1)$ for all $a, b \in \mathbb{N}$.
Remark: $\mathbb{N} = \{ 1, 2, 3, \ldots \} $ denotes the set of the positive integers.
1987 AMC 12/AHSME, 24
How many polynomial functions $f$ of degree $\ge 1$ satisfy
\[ f(x^2)=[f(x)]^2=f(f(x)) \ ? \]
$ \textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ \text{finitely many but more than 2} \\ \qquad\textbf{(E)}\ \text{infinitely many} $
1978 Miklós Schweitzer, 6
Suppose that the function $ g : (0,1) \rightarrow \mathbb{R}$ can be uniformly approximated by polynomials with nonnegative coefficients. Prove that $ g$ must be analytic. Is the statement also true for the interval $ (\minus{}1,0)$ instead of $ (0,1)$?
[i]J. Kalina, L. Lempert[/i]
1992 Hungary-Israel Binational, 1
Prove that if $c$ is a positive number distinct from $1$ and $n$ a positive integer, then
\[n^{2}\leq \frac{c^{n}+c^{-n}-2}{c+c^{-1}-2}. \]
2013 Putnam, 6
Define a function $w:\mathbb{Z}\times\mathbb{Z}\to\mathbb{Z}$ as follows. For $|a|,|b|\le 2,$ let $w(a,b)$ be as in the table shown; otherwise, let $w(a,b)=0.$
\[\begin{array}{|lr|rrrrr|}\hline &&&&b&&\\
&w(a,b)&-2&-1&0&1&2\\ \hline
&-2&-1&-2&2&-2&-1\\
&-1&-2&4&-4&4&-2\\
a&0&2&-4&12&-4&2\\
&1&-2&4&-4&4&-2\\
&2&-1&-2&2&-2&-1\\ \hline\end{array}\]
For every finite subset $S$ of $\mathbb{Z}\times\mathbb{Z},$ define \[A(S)=\sum_{(\mathbf{s},\mathbf{s'})\in S\times S} w(\mathbf{s}-\mathbf{s'}).\] Prove that if $S$ is any finite nonempty subset of $\mathbb{Z}\times\mathbb{Z},$ then $A(S)>0.$ (For example, if $S=\{(0,1),(0,2),(2,0),(3,1)\},$ then the terms in $A(S)$ are $12,12,12,12,4,4,0,0,0,0,-1,-1,-2,-2,-4,-4.$)
1997 Romania National Olympiad, 3
Let $\mathcal{F}$ be the set of the differentiable functions $f: \mathbb{R} \to \mathbb{R}$ satisfying $f(x) \ge f(x+ \sin x)$ for any $x \in \mathbb{R}.$
a) Prove that there exist nonconstant functions in $\mathcal{F}.$
b) Prove that if $f \in \mathcal{F},$ then the set of solutions of the equation $f'(x)=0$ is infinite.
2008 Harvard-MIT Mathematics Tournament, 9
Let $ S$ be the set of points $ (a,b)$ with $ 0\le a,b\le1$ such that the equation \[x^4 \plus{} ax^3 \minus{} bx^2 \plus{} ax \plus{} 1 \equal{} 0\] has at least one real root. Determine the area of the graph of $ S$.
1997 French Mathematical Olympiad, Problem 4
In a triangle $ABC$, let $a,b,c$ be its sides and $m,n,p$ be the corresponding medians. For every $\alpha>0$, let $\lambda(\alpha)$ be the real number such that
$$a^\alpha+b^\alpha+c^\alpha=\lambda(\alpha)^\alpha\left(m^\alpha+n^\alpha+p^\alpha\right)^\alpha.$$
(a) Compute $\lambda(2)$.
(b) Find the limit of $\lambda(\alpha)$ as $\alpha$ approaches $0$.
(c) For which triangles $ABC$ is $\lambda(\alpha)$ independent of $\alpha$?
2022 OMpD, 1
Given a positive integer $n \geq 2$, whose canonical prime factorization is $n = p_1^{\alpha_1}p_2^{\alpha_2} \ldots p_k^{\alpha_k}$, we define the following functions:
$$\varphi(n) = n\bigg(1 -\frac{1}{p_1}\bigg) \bigg(1 -\frac{1}{p_2}\bigg) \ldots \bigg(1 -\frac {1}{p_k}\bigg) ; \overline{\varphi}(n) = n\bigg(1 +\frac{1}{p_1}\bigg) \bigg(1 +\frac{1}{p_2}\bigg) \ldots \bigg(1 + \frac{1}{p_k}\bigg)$$
Consider all positive integers $n$ such that $\overline{\varphi}(n)$ is a multiple of $n + \varphi(n) $.
(a) Prove that $n$ is even.
(b) Determine all positive integers $n$ that satisfy this property.
2002 Iran MO (3rd Round), 15
Let A be be a point outside the circle C, and AB and AC be the two tangents from A to this circle C. Let L be an arbitrary tangent to C that cuts AB and AC in P and Q. A line through P parallel to AC cuts BC in R. Prove that while L varies, QR passes through a fixed point. :)
2014 Benelux, 1
Find the smallest possible value of the expression \[\left\lfloor\frac{a+b+c}{d}\right\rfloor+\left\lfloor\frac{b+c+d}{a}\right\rfloor+\left\lfloor\frac{c+d+a}{b}\right\rfloor+\left\lfloor\frac{d+a+b}{c}\right\rfloor\]
in which $a,~ b,~ c$, and $d$ vary over the set of positive integers.
(Here $\lfloor x\rfloor$ denotes the biggest integer which is smaller than or equal to $x$.)
2009 Indonesia TST, 3
Let $ x,y,z$ be real numbers. Find the minimum value of $ x^2\plus{}y^2\plus{}z^2$ if $ x^3\plus{}y^3\plus{}z^3\minus{}3xyz\equal{}1$.
1992 Baltic Way, 12
Let $ N$ denote the set of natural numbers. Let $ \phi: N\rightarrow N$ be a bijective function and assume that there exists a finite limit
\[ \lim_{n\rightarrow\infty}\frac{\phi(n)}{n}\equal{}L.
\] What are the possible values of $ L$?
2021 Vietnam National Olympiad, 2
Find all function $f:\mathbb{R}\to \mathbb{R}$ such that
\[f(x)f(y)=f(xy-1)+yf(x)+xf(y)\]
for all $x,y \in \mathbb{R}$
1992 AMC 8, 6
Suppose that
[asy]
unitsize(18);
draw((0,0)--(2,0)--(1,sqrt(3))--cycle);
label("$a$",(1,sqrt(3)-0.2),S);
label("$b$",(sqrt(3)/10,0.1),ENE);
label("$c$",(2-sqrt(3)/10,0.1),WNW);
[/asy]
means $a+b-c$.
For example,
[asy]
unitsize(18);
draw((0,0)--(2,0)--(1,sqrt(3))--cycle);
label("$5$",(1,sqrt(3)-0.2),S);
label("$4$",(sqrt(3)/10,0.1),ENE);
label("$6$",(2-sqrt(3)/10,0.1),WNW);
[/asy]
is $5+4-6 = 3$.
Then the sum
[asy]
unitsize(18);
draw((0,0)--(2,0)--(1,sqrt(3))--cycle);
label("$1$",(1,sqrt(3)-0.2),S);
label("$3$",(sqrt(3)/10,0.1),ENE);
label("$4$",(2-sqrt(3)/10,0.1),WNW);
draw((3,0)--(5,0)--(4,sqrt(3))--cycle);
label("$2$",(4,sqrt(3)-0.2),S);
label("$5$",(3+sqrt(3)/10,0.1),ENE);
label("$6$",(5-sqrt(3)/10,0.1),WNW);
label("$+$",(2.5,-0.1),N);
[/asy]
is
$\text{(A)}\ -2 \qquad \text{(B)}\ -1 \qquad \text{(C)}\ 0 \qquad \text{(D)}\ 1 \qquad \text{(E)}\ 2$
2009 District Olympiad, 3
Let $ f:[0,1]\longrightarrow\mathbb{R} $ be a continuous function such that
$$ \int_0^1 (x-1)f(x)dx =0. $$
Show that:
[b]a)[/b] There exists $ a\in (0,1) $ such that $ \int_0^a xf(x)dx =0. $
[b]b)[/b] There exists $ b\in (0,1) $ so that $ \int_0^b xf(x)dx=bf(b). $
2009 Costa Rica - Final Round, 1
Let $ x$ and $ y$ positive real numbers such that $ (1\plus{}x)(1\plus{}y)\equal{}2$. Show that $ xy\plus{}\frac{1}{xy}\geq\ 6$