This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2008 Indonesia MO, 2

Prove that for $ x,y\in\mathbb{R^ \plus{} }$, $ \frac {1}{(1 \plus{} \sqrt {x})^{2}} \plus{} \frac {1}{(1 \plus{} \sqrt {y})^{2}} \ge \frac {2}{x \plus{} y \plus{} 2}$

2016 China Team Selection Test, 6

Tags: algebra , function
Find all functions $f: \mathbb R^+ \rightarrow \mathbb R^+$ satisfying the following condition: for any three distinct real numbers $a,b,c$, a triangle can be formed with side lengths $a,b,c$, if and only if a triangle can be formed with side lengths $f(a),f(b),f(c)$.

2016 CMIMC, 10

Given $x_0\in\mathbb R$, $f,g:\mathbb R\to\mathbb R$, we define the $\emph{non-redundant binary tree}$ $T(x_0,f,g)$ in the following way: [list=1] [*]The tree $T$ initially consists of just $x_0$ at height $0$. [*]Let $v_0,\dots,v_k$ be the vertices at height $h$. Then the vertices of height $h+1$ are added to $T$ by: for $i=0,1,\dots,k$, $f(v_i)$ is added as a child of $v_i$ if $f(v_i)\not\in T$, and $g(v_i)$ is added as a child of $v_i$ if $g(v_i)\not\in T$. [/list] For example, if $f(x)=x+1$ and $g(x)=x-1$, then the first three layers of $T(0,f,g)$ look like: [asy] size(100); draw((-0.1,-0.2)--(-0.4,-0.8),EndArrow(size=3)); draw((0.1,-0.2)--(0.4,-0.8),EndArrow(size=3)); draw((-0.6,-1.2)--(-0.9,-1.8),EndArrow(size=3)); draw((0.6,-1.2)--(0.9,-1.8),EndArrow(size=3)); label("$0$",(0,0)); label("$1$",(-.5,-1)); label("$-1$",(.5,-1)); label("$2$",(-1,-2)); label("$-2$",(1,-2));[/asy] If $f(x)=1024x-2047\lfloor x/2\rfloor$ and $g(x)=2x-3\lfloor x/2\rfloor+2\lfloor x/4\rfloor$, then how many vertices are in $T(2016,f,g)$?

2012 Brazil National Olympiad, 6

Find all surjective functions $f\colon (0,+\infty) \to (0,+\infty)$ such that $2x f(f(x)) = f(x)(x+f(f(x)))$ for all $x>0$.

2009 Romania National Olympiad, 3

Find all functions $ f:\mathbb{R}\longrightarrow\mathbb{R} $ that verify the relation $$ f\left( x^3+y^3 \right) =xf\left( y^2 \right) + yf\left( x^2 \right) , $$ for all real numbers $ x,y. $

2000 AIME Problems, 5

Given eight distinguishable rings, let $n$ be the number of possible five-ring arrangements on the four fingers (not the thumb) of one hand. The order of rings on each finger is significant, but it is not required that each finger have a ring. Find the leftmost three nonzero digits of $n.$

1979 AMC 12/AHSME, 26

The function $f$ satisfies the functional equation \[f(x) +f(y) = f(x + y ) - xy - 1\] for every pair $x,~ y$ of real numbers. If $f( 1) = 1$, then the number of integers $n \neq 1$ for which $f ( n ) = n$ is $\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }\text{infinite}$

1992 Romania Team Selection Test, 3

Let $\pi$ be the set of points in a plane and $f : \pi \to \pi$ be a mapping such that the image of any triangle (as its polygonal line) is a square. Show that $f(\pi)$ is a square.

1976 IMO Longlists, 50

Find a function $f(x)$ defined for all real values of $x$ such that for all $x$, \[f(x+ 2) - f(x) = x^2 + 2x + 4,\] and if $x \in [0, 2)$, then $f(x) = x^2.$

2021 India National Olympiad, 6

Let $\mathbb{R}[x]$ be the set of all polynomials with real coefficients. Find all functions $f: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ satisfying the following conditions: [list] [*] $f$ maps the zero polynomial to itself, [*] for any non-zero polynomial $P \in \mathbb{R}[x]$, $\text{deg} \, f(P) \le 1+ \text{deg} \, P$, and [*] for any two polynomials $P, Q \in \mathbb{R}[x]$, the polynomials $P-f(Q)$ and $Q-f(P)$ have the same set of real roots. [/list] [i]Proposed by Anant Mudgal, Sutanay Bhattacharya, Pulkit Sinha[/i]

2018 Hong Kong TST, 3

Find all functions $f:\mathbb R \rightarrow \mathbb R$ such that $$f(f(xy-x))+f(x+y)=yf(x)+f(y)$$ for all real numbers $x$ and $y$.

2020 Serbia National Math Olympiad, 5

For a natural number $n$, with $v_2(n)$ we denote the largest integer $k\geq0$ such that $2^k|n$. Let us assume that the function $f\colon\mathbb{N}\to\mathbb{N}$ meets the conditions: $(i)$ $f(x)\leq3x$ for all natural numbers $x\in\mathbb{N}$. $(ii)$ $v_2(f(x)+f(y))=v_2(x+y)$ for all natural numbers $x,y\in\mathbb{N}$. Prove that for every natural number $a$ there exists exactly one natural number $x$ such that $f(x)=3a$.

1989 China Team Selection Test, 2

$AD$ is the altitude on side $BC$ of triangle $ABC$. If $BC+AD-AB-AC = 0$, find the range of $\angle BAC$. [i]Alternative formulation.[/i] Let $AD$ be the altitude of triangle $ABC$ to the side $BC$. If $BC+AD=AB+AC$, then find the range of $\angle{A}$.

2006 AMC 10, 7

Tags: function
Which of the following is equivalent to $ \displaystyle \sqrt {\frac {x}{1 \minus{} \frac {x \minus{} 1}{x}}}$ when $ x < 0$? $ \textbf{(A) } \minus{} x \qquad \textbf{(B) } x \qquad \textbf{(C) } 1 \qquad \textbf{(D) } \sqrt {\frac x2} \qquad \textbf{(E) } x\sqrt { \minus{} 1}$

2009 Harvard-MIT Mathematics Tournament, 5

Tags: function
Let $s(n)$ denote the number of $1$'s in the binary representation of $n$. Compute \[ \frac{1}{255}\sum_{0\leq n<16}2^n(-1)^{s(n)}. \]

2017 NIMO Summer Contest, 15

Tags: function
For all positive integers $n$, denote by $\sigma(n)$ the sum of the positive divisors of $n$ and $\nu_p(n)$ the largest power of $p$ which divides $n$. Compute the largest positive integer $k$ such that $5^k$ divides \[\sum_{d|N}\nu_3(d!)(-1)^{\sigma(d)},\] where $N=6^{1999}$. [i]Proposed by David Altizio[/i]

1984 Iran MO (2nd round), 1

Let $f$ and $g$ be two functions such that \[f(x)=\frac{1}{\lfloor | x | \rfloor}, \quad g(x)=\frac{1}{|\lfloor x \rfloor |}.\] Find the domains of $f$ and $g$ and then prove that \[\lim_{x \to -1^+} f(x)= \lim_{x \to 1^- } g(x).\]

2005 Purple Comet Problems, 19

Tags: function
Let $x$ and $y$ be integers satisfying both $x^2 - 16x + 3y = 20$ and $y^2 + 4y - x = -12$. Find $x + y$.

2011 ISI B.Stat Entrance Exam, 4

Let $f$ be a twice differentiable function on the open interval $(-1,1)$ such that $f(0)=1$. Suppose $f$ also satisfies $f(x) \ge 0, f'(x) \le 0$ and $f''(x) \le f(x)$, for all $x\ge 0$. Show that $f'(0) \ge -\sqrt2$.

2011 District Olympiad, 3

Let $ f:[0,1]\longrightarrow\mathbb{R} $ be a continuous and nondecreasing function. [b]a)[/b] Show that the sequence $ \left( \frac{1}{2^n}\sum_{i=1}^{2^n} f\left(\frac{i}{2^n}\right) \right)_{n\ge 1} $ is nonincreasing. [b]b)[/b] Prove that, if there exists some natural index at which the sequence above is equal to $ \int_0^1 f(x)dx, $ then $ f $ is constant.

2003 China Team Selection Test, 1

Find all functions $f: \mathbb{Z}^+\to \mathbb{R}$, which satisfies $f(n+1)\geq f(n)$ for all $n\geq 1$ and $f(mn)=f(m)f(n)$ for all $(m,n)=1$.

2013 Romanian Masters In Mathematics, 2

Does there exist a pair $(g,h)$ of functions $g,h:\mathbb{R}\rightarrow\mathbb{R}$ such that the only function $f:\mathbb{R}\rightarrow\mathbb{R}$ satisfying $f(g(x))=g(f(x))$ and $f(h(x))=h(f(x))$ for all $x\in\mathbb{R}$ is identity function $f(x)\equiv x$?

2009 Kurschak Competition, 3

Tags: function , algebra
Find all functions $f:\mathbb{Z}\to \mathbb{Q}$ with the following properties: if $f(x)<c<f(y)$ for some rational $c$, then $f$ takes on the value of $c$, and \[f(x)+f(y)+f(z)=f(x)f(y)f(z)\] whenever $x+y+z=0$.

2007 ITest, 48

Let $a$ and $b$ be relatively prime positive integers such that $a/b$ is the maximum possible value of \[\sin^2x_1+\sin^2x_2+\sin^2x_3+\cdots+\sin^2x_{2007},\] where, for $1\leq i\leq 2007$, $x_i$ is a nonnegative real number, and \[x_1+x_2+x_3+\cdots+x_{2007}=\pi.\] Find the value of $a+b$.

2000 National Olympiad First Round, 8

Tags: function
\[\begin{array}{rcl} (x+y)^5 &=& z \\ (y+z)^5 &=& x \\ (z+x)^5 &=& y \end{array}\] How many real triples $(x,y,z)$ are there satisfying above equation system? $ \textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ \text{Infinitely many} \qquad\textbf{(E)}\ \text{None} $