Found problems: 4776
2008 Indonesia MO, 2
Prove that for $ x,y\in\mathbb{R^ \plus{} }$,
$ \frac {1}{(1 \plus{} \sqrt {x})^{2}} \plus{} \frac {1}{(1 \plus{} \sqrt {y})^{2}} \ge \frac {2}{x \plus{} y \plus{} 2}$
2016 China Team Selection Test, 6
Find all functions $f: \mathbb R^+ \rightarrow \mathbb R^+$ satisfying the following condition: for any three distinct real numbers $a,b,c$, a triangle can be formed with side lengths $a,b,c$, if and only if a triangle can be formed with side lengths $f(a),f(b),f(c)$.
2016 CMIMC, 10
Given $x_0\in\mathbb R$, $f,g:\mathbb R\to\mathbb R$, we define the $\emph{non-redundant binary tree}$ $T(x_0,f,g)$ in the following way:
[list=1]
[*]The tree $T$ initially consists of just $x_0$ at height $0$.
[*]Let $v_0,\dots,v_k$ be the vertices at height $h$. Then the vertices of height $h+1$ are added to $T$ by: for $i=0,1,\dots,k$, $f(v_i)$ is added as a child of $v_i$ if $f(v_i)\not\in T$, and $g(v_i)$ is added as a child of $v_i$ if $g(v_i)\not\in T$.
[/list]
For example, if $f(x)=x+1$ and $g(x)=x-1$, then the first three layers of $T(0,f,g)$ look like:
[asy]
size(100);
draw((-0.1,-0.2)--(-0.4,-0.8),EndArrow(size=3));
draw((0.1,-0.2)--(0.4,-0.8),EndArrow(size=3));
draw((-0.6,-1.2)--(-0.9,-1.8),EndArrow(size=3));
draw((0.6,-1.2)--(0.9,-1.8),EndArrow(size=3));
label("$0$",(0,0));
label("$1$",(-.5,-1));
label("$-1$",(.5,-1));
label("$2$",(-1,-2));
label("$-2$",(1,-2));[/asy]
If $f(x)=1024x-2047\lfloor x/2\rfloor$ and $g(x)=2x-3\lfloor x/2\rfloor+2\lfloor x/4\rfloor$, then how many vertices are in $T(2016,f,g)$?
2012 Brazil National Olympiad, 6
Find all surjective functions $f\colon (0,+\infty) \to (0,+\infty)$ such that $2x f(f(x)) = f(x)(x+f(f(x)))$ for all $x>0$.
2009 Romania National Olympiad, 3
Find all functions $ f:\mathbb{R}\longrightarrow\mathbb{R} $ that verify the relation
$$ f\left( x^3+y^3 \right) =xf\left( y^2 \right) + yf\left( x^2 \right) , $$
for all real numbers $ x,y. $
2000 AIME Problems, 5
Given eight distinguishable rings, let $n$ be the number of possible five-ring arrangements on the four fingers (not the thumb) of one hand. The order of rings on each finger is significant, but it is not required that each finger have a ring. Find the leftmost three nonzero digits of $n.$
1979 AMC 12/AHSME, 26
The function $f$ satisfies the functional equation \[f(x) +f(y) = f(x + y ) - xy - 1\] for every pair $x,~ y$ of real numbers. If $f( 1) = 1$, then the number of integers $n \neq 1$ for which $f ( n ) = n$ is
$\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }\text{infinite}$
1992 Romania Team Selection Test, 3
Let $\pi$ be the set of points in a plane and $f : \pi \to \pi$ be a mapping such that the image of any triangle (as its polygonal line) is a square. Show that $f(\pi)$ is a square.
1976 IMO Longlists, 50
Find a function $f(x)$ defined for all real values of $x$ such that for all $x$,
\[f(x+ 2) - f(x) = x^2 + 2x + 4,\]
and if $x \in [0, 2)$, then $f(x) = x^2.$
2021 India National Olympiad, 6
Let $\mathbb{R}[x]$ be the set of all polynomials with real coefficients. Find all functions $f: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ satisfying the following conditions:
[list]
[*] $f$ maps the zero polynomial to itself,
[*] for any non-zero polynomial $P \in \mathbb{R}[x]$, $\text{deg} \, f(P) \le 1+ \text{deg} \, P$, and
[*] for any two polynomials $P, Q \in \mathbb{R}[x]$, the polynomials $P-f(Q)$ and $Q-f(P)$ have the same set of real roots.
[/list]
[i]Proposed by Anant Mudgal, Sutanay Bhattacharya, Pulkit Sinha[/i]
2018 Hong Kong TST, 3
Find all functions $f:\mathbb R \rightarrow \mathbb R$ such that
$$f(f(xy-x))+f(x+y)=yf(x)+f(y)$$
for all real numbers $x$ and $y$.
2020 Serbia National Math Olympiad, 5
For a natural number $n$, with $v_2(n)$ we denote the largest integer $k\geq0$ such that $2^k|n$. Let us assume that the function $f\colon\mathbb{N}\to\mathbb{N}$ meets the conditions:
$(i)$ $f(x)\leq3x$ for all natural numbers $x\in\mathbb{N}$.
$(ii)$ $v_2(f(x)+f(y))=v_2(x+y)$ for all natural numbers $x,y\in\mathbb{N}$.
Prove that for every natural number $a$ there exists exactly one natural number $x$ such that $f(x)=3a$.
1989 China Team Selection Test, 2
$AD$ is the altitude on side $BC$ of triangle $ABC$. If $BC+AD-AB-AC = 0$, find the range of $\angle BAC$.
[i]Alternative formulation.[/i] Let $AD$ be the altitude of triangle $ABC$ to the side $BC$. If $BC+AD=AB+AC$, then find the range of $\angle{A}$.
2006 AMC 10, 7
Which of the following is equivalent to $ \displaystyle \sqrt {\frac {x}{1 \minus{} \frac {x \minus{} 1}{x}}}$ when $ x < 0$?
$ \textbf{(A) } \minus{} x \qquad \textbf{(B) } x \qquad \textbf{(C) } 1 \qquad \textbf{(D) } \sqrt {\frac x2} \qquad \textbf{(E) } x\sqrt { \minus{} 1}$
2009 Harvard-MIT Mathematics Tournament, 5
Let $s(n)$ denote the number of $1$'s in the binary representation of $n$. Compute
\[
\frac{1}{255}\sum_{0\leq n<16}2^n(-1)^{s(n)}.
\]
2017 NIMO Summer Contest, 15
For all positive integers $n$, denote by $\sigma(n)$ the sum of the positive divisors of $n$ and $\nu_p(n)$ the largest power of $p$ which divides $n$. Compute the largest positive integer $k$ such that $5^k$ divides \[\sum_{d|N}\nu_3(d!)(-1)^{\sigma(d)},\] where $N=6^{1999}$.
[i]Proposed by David Altizio[/i]
1984 Iran MO (2nd round), 1
Let $f$ and $g$ be two functions such that
\[f(x)=\frac{1}{\lfloor | x | \rfloor}, \quad g(x)=\frac{1}{|\lfloor x \rfloor |}.\]
Find the domains of $f$ and $g$ and then prove that
\[\lim_{x \to -1^+} f(x)= \lim_{x \to 1^- } g(x).\]
2005 Purple Comet Problems, 19
Let $x$ and $y$ be integers satisfying both $x^2 - 16x + 3y = 20$ and $y^2 + 4y - x = -12$. Find $x + y$.
2011 ISI B.Stat Entrance Exam, 4
Let $f$ be a twice differentiable function on the open interval $(-1,1)$ such that $f(0)=1$. Suppose $f$ also satisfies $f(x) \ge 0, f'(x) \le 0$ and $f''(x) \le f(x)$, for all $x\ge 0$. Show that $f'(0) \ge -\sqrt2$.
2011 District Olympiad, 3
Let $ f:[0,1]\longrightarrow\mathbb{R} $ be a continuous and nondecreasing function.
[b]a)[/b] Show that the sequence $ \left( \frac{1}{2^n}\sum_{i=1}^{2^n} f\left(\frac{i}{2^n}\right) \right)_{n\ge 1} $ is nonincreasing.
[b]b)[/b] Prove that, if there exists some natural index at which the sequence above is equal to $ \int_0^1 f(x)dx, $ then $ f $ is constant.
2003 China Team Selection Test, 1
Find all functions $f: \mathbb{Z}^+\to \mathbb{R}$, which satisfies $f(n+1)\geq f(n)$ for all $n\geq 1$ and $f(mn)=f(m)f(n)$ for all $(m,n)=1$.
2013 Romanian Masters In Mathematics, 2
Does there exist a pair $(g,h)$ of functions $g,h:\mathbb{R}\rightarrow\mathbb{R}$ such that the only function $f:\mathbb{R}\rightarrow\mathbb{R}$ satisfying $f(g(x))=g(f(x))$ and $f(h(x))=h(f(x))$ for all $x\in\mathbb{R}$ is identity function $f(x)\equiv x$?
2009 Kurschak Competition, 3
Find all functions $f:\mathbb{Z}\to \mathbb{Q}$ with the following properties: if $f(x)<c<f(y)$ for some rational $c$, then $f$ takes on the value of $c$, and
\[f(x)+f(y)+f(z)=f(x)f(y)f(z)\]
whenever $x+y+z=0$.
2007 ITest, 48
Let $a$ and $b$ be relatively prime positive integers such that $a/b$ is the maximum possible value of \[\sin^2x_1+\sin^2x_2+\sin^2x_3+\cdots+\sin^2x_{2007},\] where, for $1\leq i\leq 2007$, $x_i$ is a nonnegative real number, and \[x_1+x_2+x_3+\cdots+x_{2007}=\pi.\] Find the value of $a+b$.
2000 National Olympiad First Round, 8
\[\begin{array}{rcl}
(x+y)^5 &=& z \\
(y+z)^5 &=& x \\
(z+x)^5 &=& y \end{array}\]
How many real triples $(x,y,z)$ are there satisfying above equation system?
$ \textbf{(A)}\ 1
\qquad\textbf{(B)}\ 2
\qquad\textbf{(C)}\ 3
\qquad\textbf{(D)}\ \text{Infinitely many}
\qquad\textbf{(E)}\ \text{None}
$