This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2012 Middle European Mathematical Olympiad, 4

Let $ p>2 $ be a prime number. For any permutation $ \pi = ( \pi(1) , \pi(2) , \cdots , \pi(p) ) $ of the set $ S = \{ 1, 2, \cdots , p \} $, let $ f( \pi ) $ denote the number of multiples of $ p $ among the following $ p $ numbers: \[ \pi(1) , \pi(1) + \pi(2) , \cdots , \pi(1) + \pi(2) + \cdots + \pi(p) \] Determine the average value of $ f( \pi) $ taken over all permutations $ \pi $ of $ S $.

2004 USA Team Selection Test, 6

Define the function $f: \mathbb N \cup \{0\} \to \mathbb{Q}$ as follows: $f(0) = 0$ and \[ f(3n+k) = -\frac{3f(n)}{2} + k , \] for $k = 0, 1, 2$. Show that $f$ is one-to-one and determine the range of $f$.

1969 IMO Longlists, 8

Find all functions $f$ defined for all $x$ that satisfy the condition $xf(y) + yf(x) = (x + y)f(x)f(y),$ for all $x$ and $y.$ Prove that exactly two of them are continuous.

2012 Online Math Open Problems, 46

If $f$ is a function from the set of positive integers to itself such that $f(x) \leq x^2$ for all natural $x$, and $f\left( f(f(x)) f(f(y))\right) = xy$ for all naturals $x$ and $y$. Find the number of possible values of $f(30)$. [i]Author: Alex Zhu[/i]

2017 BMO TST, 3

Tags: function , algebra
Find all functions $f : \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ such that : $f(x)f(y)f(z)=9f(z+xyf(z))$, where $x$, $y$, $z$, are three positive real numbers.

2012 Today's Calculation Of Integral, 794

Define a function $f(x)=\int_0^{\frac{\pi}{2}} \frac{\cos |t-x|}{1+\sin |t-x|}dt$ for $0\leq x\leq \pi$. Find the maximum and minimum value of $f(x)$ in $0\leq x\leq \pi$.

2015 Moldova Team Selection Test, 1

Let $c\in \Big(0,\dfrac{\pi}{2}\Big) , a = \Big(\dfrac{1}{sin(c)}\Big)^{\dfrac{1}{cos^2 (c)}}, b = \Big(\dfrac{1}{cos(c)}\Big)^{\dfrac{1}{sin^2 (c)}}$. \\Prove that at least one of $a,b$ is bigger than $\sqrt[11]{2015}$.

2021 JHMT HS, 9

Define a sequence $\{ a_n \}_{n=0}^{\infty}$ by $a_0 = 1,$ $a_1 = 8,$ and $a_n = 2a_{n-1} + a_{n-2}$ for $n \geq 2.$ The infinite sum \[ \sum_{n=1}^{\infty} \int_{0}^{2021\pi/14} \sin(a_{n-1}x)\sin(a_nx)\,dx \] can be expressed as a common fraction $\tfrac{p}{q}.$ Compute $p + q.$

2004 Italy TST, 3

Find all functions $f:\mathbb{N}\rightarrow \mathbb{N}$ such that for all $m,n\in\mathbb{N}$, \[(2^m+1)f(n)f(2^mn)=2^mf(n)^2+f(2^mn)^2+(2^m-1)^2n. \]

1998 IMO Shortlist, 2

Let $r_{1},r_{2},\ldots ,r_{n}$ be real numbers greater than or equal to 1. Prove that \[ \frac{1}{r_{1} + 1} + \frac{1}{r_{2} + 1} + \cdots +\frac{1}{r_{n}+1} \geq \frac{n}{ \sqrt[n]{r_{1}r_{2} \cdots r_{n}}+1}. \]

2008 Alexandru Myller, 3

Find the nondecreasing functions $ f:[0,1]\rightarrow\mathbb{R} $ that satisfy $$ \left| \int_0^1 f(x)e^{nx} dx\right|\le 2008 , $$ for any nonnegative integer $ n. $ [i]Mihai Piticari[/i]

2010 Contests, 4

Let $a,b,c$ be positive real numbers such that $ab+bc+ca\le 3abc$. Prove that \[\sqrt{\frac{a^2+b^2}{a+b}}+\sqrt{\frac{b^2+c^2}{b+c}}+\sqrt{\frac{c^2+a^2}{c+a}}+3\le \sqrt{2} (\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a})\]

1994 IMO Shortlist, 4

Let $ \mathbb{R}$ denote the set of all real numbers and $ \mathbb{R}^\plus{}$ the subset of all positive ones. Let $ \alpha$ and $ \beta$ be given elements in $ \mathbb{R},$ not necessarily distinct. Find all functions $ f: \mathbb{R}^\plus{} \mapsto \mathbb{R}$ such that \[ f(x)f(y) \equal{} y^{\alpha} f \left( \frac{x}{2} \right) \plus{} x^{\beta} f \left( \frac{y}{2} \right) \forall x,y \in \mathbb{R}^\plus{}.\]

1985 IMO Shortlist, 9

Determine the radius of a sphere $S$ that passes through the centroids of each face of a given tetrahedron $T$ inscribed in a unit sphere with center $O$. Also, determine the distance from $O$ to the center of $S$ as a function of the edges of $T.$

2025 Romania National Olympiad, 3

Prove that, for a function $f \colon \mathbb{R} \to \mathbb{R}$, the following $2$ statements are equivalent: a) $f$ is differentiable, with continuous first derivative. b) For any $a\in\mathbb{R}$ and for any two sequences $(x_n)_{n\geq 1},(y_n)_{n\geq 1}$, convergent to $a$, such that $x_n \neq y_n$ for any positive integer $n$, the sequence $\left(\frac{f(x_n)-f(y_n)}{x_n-y_n}\right)_{n\geq 1}$ is convergent.

Russian TST 2018, P1

Functions $f,g:\mathbb{Z}\to\mathbb{Z}$ satisfy $$f(g(x)+y)=g(f(y)+x)$$ for any integers $x,y$. If $f$ is bounded, prove that $g$ is periodic.

2010 All-Russian Olympiad, 3

Polynomial $P(x)$ with degree $n \geq 3$ has $n$ real roots $x_1 < x_2 < x_3 <...< x_n$, such that $x_2-x_1<x_3-x_2<....<x_n-x_{n-1}$. Prove that the maximum of the function $y=|P(x)|$ where $x$ is on the interval $[ x_1, x_n ]$, is in the interval $[x_n-1, x_n]$.

2016 USAMO, 4

Tags: function , algebra
Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that for all real numbers $x$ and $y$, $$(f(x)+xy)\cdot f(x-3y)+(f(y)+xy)\cdot f(3x-y)=(f(x+y))^2.$$

2010 Romania National Olympiad, 1

Let $(a_n)_{n\ge0}$ be a sequence of positive real numbers such that \[\sum_{k=0}^nC_n^ka_ka_{n-k}=a_n^2,\ \text{for any }n\ge 0.\] Prove that $(a_n)_{n\ge0}$ is a geometric sequence. [i]Lucian Dragomir[/i]

2015 Indonesia MO, 4

Let function pair $f,g : \mathbb{R^+} \rightarrow \mathbb{R^+}$ satisfies \[ f(g(x)y + f(x)) = (y+2015)f(x) \] for every $x,y \in \mathbb{R^+} $ a. Prove that $f(x) = 2015g(x)$ for every $x \in \mathbb{R^+}$ b. Give an example of function pair $(f,g)$ that satisfies the statement above and $f(x), g(x) \geq 1$ for every $x \in \mathbb{R^+}$

2013 Vietnam Team Selection Test, 2

a. Prove that there are infinitely many positive integers $t$ such that both $2012t+1$ and $2013t+1$ are perfect squares. b. Suppose that $m,n$ are positive integers such that both $mn+1$ and $mn+n+1$ are perfect squares. Prove that $8(2m+1)$ divides $n$.

2011 IMO Shortlist, 5

Let $f$ be a function from the set of integers to the set of positive integers. Suppose that, for any two integers $m$ and $n$, the difference $f(m) - f(n)$ is divisible by $f(m- n)$. Prove that, for all integers $m$ and $n$ with $f(m) \leq f(n)$, the number $f(n)$ is divisible by $f(m)$. [i]Proposed by Mahyar Sefidgaran, Iran[/i]

1998 Iran MO (3rd Round), 1

Find all functions $f: \mathbb N \to \mathbb N$ such that for all positive integers $m,n$, [b](i)[/b] $mf(f(m))=\left( f(m) \right)^2$, [b](ii)[/b] If $\gcd(m,n)=d$, then $f(mn) \cdot f(d)=d \cdot f(m) \cdot f(n)$, [b](iii)[/b] $f(m)=m$ if and only if $m=1$.

2018 China Team Selection Test, 4

Functions $f,g:\mathbb{Z}\to\mathbb{Z}$ satisfy $$f(g(x)+y)=g(f(y)+x)$$ for any integers $x,y$. If $f$ is bounded, prove that $g$ is periodic.

2007 AMC 12/AHSME, 21

The sum of the zeros, the product of the zeros, and the sum of the coefficients of the function $ f(x) \equal{} ax^{2} \plus{} bx \plus{} c$ are equal. Their common value must also be which of the following? $ \textbf{(A)}\ \text{the coefficient of }x^{2}\qquad \textbf{(B)}\ \text{the coefficient of }x$ $ \textbf{(C)}\ \text{the y \minus{} intercept of the graph of }y \equal{} f(x)$ $ \textbf{(D)}\ \text{one of the x \minus{} intercepts of the graph of }y \equal{} f(x)$ $ \textbf{(E)}\ \text{the mean of the x \minus{} intercepts of the graph of }y \equal{} f(x)$