Found problems: 4776
2007 F = Ma, 13
A particle moves along the $x$-axis. It collides elastically head-on with an identical particle initially at rest. Which of the following graphs could illustrate the momentum of each particle as a function of time?
[asy]
size(400);
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps);
draw((0,0)--(0,5));
draw((0,1.5)--(5,1.5));
label("$p$",(0,5),N);
label("$t$",(5,1.5),E);
label("$\mathbf{(A)}$",(2.5,-0.5));
draw((0,1.5)--(2.5,1.5)--(2.5,0.75)--(4,0.75),black+linewidth(2));
draw((0,3.5)--(2.5,3.5)--(2.5,4.25)--(4,4.25),black+linewidth(2));
draw((8,0)--(8,5));
draw((8,1.5)--(13,1.5));
label("$p$",(8,5),N);
label("$t$",(13,1.5),E);
label("$\mathbf{(B)}$",(10.5,-0.5));
draw((8,1.5)--(10.5,1.5)--(10.5,2.5)--(12,2.5),black+linewidth(2));
draw((8,3.5)--(10.5,3.5)--(10.5,4.5)--(12,4.5),black+linewidth(2));
draw((16,0)--(16,5));
draw((16,1.5)--(21,1.5));
label("$p$",(16,5),N);
label("$t$",(21,1.5),E);
label("$\mathbf{(C)}$",(18.5,-0.5));
draw((16,1.5)--(18.5,1.5)--(18.5,2.25)--(20,2.25),black+linewidth(2));
draw((16,3.5)--(18.5,3.5)--(18.5,2.75)--(20,2.75),black+linewidth(2));
draw((24,0)--(24,5));
draw((24,1.5)--(29,1.5));
label("$p$",(24,5),N);
label("$t$",(29,1.5),E);
label("$\mathbf{(D)}$",(26.5,-0.5));
draw((24,1.5)--(26.5,1.5)--(26.75,3.25)--(28,3.25),black+linewidth(2));
draw((24,3.25)--(26.5,3.25)--(26.75,1.5)--(28,1.5),black+linewidth(2));
draw((32,0)--(32,5));
draw((32,1.5)--(37,1.5));
label("$p$",(32,5),N);
label("$t$",(37,1.5),E);
label("$\mathbf{(E)}$",(34.5,-0.5));
draw((32,1.5)--(34.5,1.5)--(34.5,0.5)--(36,0.5),black+linewidth(2));
draw((32,3.5)--(34.5,3.5)--(34.5,2.75)--(36,2.75),black+linewidth(2));
[/asy]
1969 Canada National Olympiad, 2
Determine which of the two numbers $\sqrt{c+1}-\sqrt{c}$, $\sqrt{c}-\sqrt{c-1}$ is greater for any $c\ge 1$.
2005 Moldova National Olympiad, 11.2
Let $a$ and $b$ be two real numbers.
Find these numbers given that the graphs of $f:\mathbb{R} \to \mathbb{R} , f(x)=2x^4-a^2x^2+b-1$ and $g:\mathbb{R} \to \mathbb{R} ,g(x)=2ax^3-1$ have exactly two points of intersection.
2007 Gheorghe Vranceanu, 3
Find all functions $ f:\mathbb{R}\longrightarrow\mathbb{R} $ that admit a primitive $ F $ defined as $ F(x)=\left\{\begin{matrix} f(x)/x, & x\neq 0 \\ 2007, & x=0 \end{matrix}\right. . $
1998 Brazil National Olympiad, 2
Find all functions $f : \mathbb N \to \mathbb N$ satisfying, for all $x \in \mathbb N$, \[ f(2f(x)) = x + 1998 . \]
2016 Balkan MO Shortlist, A8
Find all functions $f : Z \to Z$ for which $f(g(n)) - g(f(n))$ is independent on $n$ for any $g : Z \to Z$.
2005 China Second Round Olympiad, 3
For each positive integer, define a function \[ f(n)=\begin{cases}0, &\text{if n is the square of an integer}\\ \\ \left\lfloor\frac{1}{\{\sqrt{n}\}}\right\rfloor, &\text{if n is not the square of an integer}\end{cases}. \] Find the value of $\sum_{k=1}^{200} f(k)$.
1995 Putnam, 5
Let $x_1,x_2,\cdots, x_n$ be real valued differentiable functions of a variable $t$ which satisfy
\begin{align*}
& \frac{\mathrm{d}x_1}{\mathrm{d}t}=a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n\\
& \frac{\mathrm{d}x_2}{\mathrm{d}t}=a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n\\
& \;\qquad \vdots \\
& \frac{\mathrm{d}x_n}{\mathrm{d}t}=a_{n1}x_1+a_{n2}x_2+\cdots+a_{nn}x_n\\
\end{align*}
For some constants $a_{ij}>0$. Suppose that $\lim_{t \to \infty}x_i(t)=0$ for all $1\le i \le n$. Are the functions $x_i$ necessarily linearly dependent?
2025 VJIMC, 4
Let $D = \{z\in \mathbb{C}: |z| < 1\}$ be the open unit disk in the complex plane and let $f : D \to D$ be a holomorphic function such that $\lim_{|z|\to 1}|f(z)| = 1$. Let the Taylor series of $f$ be $f(z) = \sum_{n=0}^{\infty} a_nz^n$. Prove that the number of zeroes of $f$ (counted with multiplicities) equals $\sum_{n=0}^{\infty} n|a_n|^2$.
2016 Mathematical Talent Reward Programme, MCQ: P 14
Let $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$. Find $x$ such that $x\lfloor x\lfloor x\lfloor x\rfloor\rfloor \rfloor = 88$
[list=1]
[*] $\pi$
[*] 3.14
[*] $\frac{22}{7}$
[*] All of these
[/list]
2005 Today's Calculation Of Integral, 33
Evaluate
\[\int_{-\ln 2}^0\ \frac{dx}{\cos ^2 h x \cdot \sqrt{1-2a\tanh x +a^2}}\ (a>0)\]
2005 Romania National Olympiad, 2
Let $G$ be a group with $m$ elements and let $H$ be a proper subgroup of $G$ with $n$ elements. For each $x\in G$ we denote $H^x = \{ xhx^{-1} \mid h \in H \}$ and we suppose that $H^x \cap H = \{e\}$, for all $x\in G - H$ (where by $e$ we denoted the neutral element of the group $G$).
a) Prove that $H^x=H^y$ if and only if $x^{-1}y \in H$;
b) Find the number of elements of the set $\bigcup_{x\in G} H^x$ as a function of $m$ and $n$.
[i]Calin Popescu[/i]
2017 Miklós Schweitzer, 8
Let the base $2$ representation of $x\in[0;1)$ be $x=\sum_{i=0}^\infty \frac{x_i}{2^{i+1}}$. (If $x$ is dyadically rational, i.e. $x\in\left\{\frac{k}{2^n}\,:\, k,n\in\mathbb{Z}\right\}$, then we choose the finite representation.) Define function $f_n:[0;1)\to\mathbb{Z}$ by
$$f_n(x)=\sum_{j=0}^{n-1}(-1)^{\sum_{i=0}^j x_i}.$$Does there exist a function $\varphi:[0;\infty)\to[0;\infty)$ such that $\lim_{x\to\infty} \varphi(x)=\infty$ and
$$\sup_{n\in\mathbb{N}}\int_0^1 \varphi(|f_n(x)|)\mathrm{d}x<\infty\, ?$$
2023 Rioplatense Mathematical Olympiad, 6
Find all functions $f:\mathbb{Z} \rightarrow \mathbb{Z}$ such that
$$f(x+f(y+1))+f(xy)=f(x+1)(f(y)+1)$$
for any $x,y$ integers.
1984 National High School Mathematics League, 6
If $F(\frac{1-x}{1+x})=x$, then
$\text{(A)}F(-2-x)=-2-F(x)\qquad\text{(B)}F(-x)=F(\frac{1+x}{1-x})$
$\text{(C)}F(\frac{1}{x})=F(x)\qquad\text{(D)}F(F(-x))=-x$
2011 Brazil Team Selection Test, 5
Determine all functions $f:\mathbb{R}\to\mathbb{R}$, where $\mathbb{R}$ is the set of all real numbers, satisfying the following two conditions:
1) There exists a real number $M$ such that for every real number $x,f(x)<M$ is satisfied.
2) For every pair of real numbers $x$ and $y$,
\[ f(xf(y))+yf(x)=xf(y)+f(xy)\]
is satisfied.
2005 Bulgaria Team Selection Test, 3
Let $\mathbb{R}^{*}$ be the set of non-zero real numbers. Find all functions $f : \mathbb{R}^{*} \to \mathbb{R}^{*}$ such that $f(x^{2}+y) = (f(x))^{2} + \frac{f(xy)}{f(x)}$, for all $x,y \in \mathbb{R}^{*}$ and $-x^{2} \not= y$.
2017 Mathematical Talent Reward Programme, SAQ: P 3
Let $f:[0,1]\to [0,1]$ be a continuous function. We say $f\equiv 0$ if $f(x)=0$ for all $x\in [0,1]$ and similarly $f\not\equiv 0$ if there exists at least one $x\in [0,1]$ such that $f(x)\neq 0$. Suppose $f\not\equiv 0$, $f \circ f \not\equiv 0$ but $f \circ f \circ f \equiv 0$. Do there exists such an $f$? If yes construct such an function, if no prove it
2006 China Girls Math Olympiad, 1
Let $a>0$, the function $f: (0,+\infty) \to R$ satisfies $f(a)=1$, if for any positive reals $x$ and $y$, there is \[f(x)f(y)+f \left( \frac{a}{x}\right)f \left( \frac{a}{y}\right) =2f(xy)\] then prove that $f(x)$ is a constant.
2013 ELMO Shortlist, 1
Find all triples $(f,g,h)$ of injective functions from the set of real numbers to itself satisfying
\begin{align*}
f(x+f(y)) &= g(x) + h(y) \\
g(x+g(y)) &= h(x) + f(y) \\
h(x+h(y)) &= f(x) + g(y)
\end{align*}
for all real numbers $x$ and $y$. (We say a function $F$ is [i]injective[/i] if $F(a)\neq F(b)$ for any distinct real numbers $a$ and $b$.)
[i]Proposed by Evan Chen[/i]
2021 Romanian Master of Mathematics Shortlist, A1
Determine all functions $f:\mathbb{R} \to \mathbb{R}$ such that
\[ f(xy+f(x)) + f(y) = xf(y) + f(x+y) \]
for all real numbers $x$ and $y$.
2024 Belarusian National Olympiad, 8.2
Let $S$ be the set of all non-increasing sequences of numbers $a_1 \geq a_2 \geq \ldots \geq a_{101}$ such that $a_i \in \{ 0,1,\ldots ,101 \}$ for all $1 \leq i \leq 101$
For every sequence $s \in S$ let $$f(s)=\lceil \frac{a_1}{2} \rceil+\lfloor \frac{a_2}{2} \rfloor + \lceil \frac{a_3}{2} \rceil + \ldots + \lfloor \frac{a_{100}}{2} \rfloor + \lceil \frac{a_{101}}{2} \rceil$$
where $\lfloor x \rfloor$ is the greatest integer, not exceeding $x$, and $\lceil x \rceil$ is the least integer at least $x$.
Prove that the number of sequences $s \in S$ for which $f(s)$ is even is the same, as the number of sequences $s$ for which $f(s)$ is odd
[i]M. Zorka[/i]
2020 Brazil National Olympiad, 6
Let $f (x) = 2x^2 + x - 1$, $f^0(x) = x$ and $f^{n + 1}(x) = f (f^n(x))$ for all real $x$ and $n \ge 0$ integer .
(a) Determine the number of real distinct solutions of the equation of $f^3(x) = x$.
(b) Determine, for each integer $n \ge 0$, the number of real distinct solutions of the equation $f^n(x) = 0$.
2003 District Olympiad, 1
Find all functions $\displaystyle f : \mathbb N^\ast \to \mathbb N^\ast$ ($\displaystyle N^\ast = \{ 1,2,3,\ldots \}$) with the property that, for all $\displaystyle n \geq 1$, \[ f(1) + f(2) + \ldots + f(n) \] is a perfect cube $\leq n^3$.
[i]Dinu Teodorescu[/i]
2006 Germany Team Selection Test, 1
Let $n\geq 3$ be a fixed integer. Each side and each diagonal of a regular $n$-gon is labelled with a number from the set $\left\{1;\;2;\;...;\;r\right\}$ in a way such that the following two conditions are fulfilled:
[b]1.[/b] Each number from the set $\left\{1;\;2;\;...;\;r\right\}$ occurs at least once as a label.
[b]2.[/b] In each triangle formed by three vertices of the $n$-gon, two of the sides are labelled with the same number, and this number is greater than the label of the third side.
[b](a)[/b] Find the maximal $r$ for which such a labelling is possible.
[b](b)[/b] [i]Harder version (IMO Shortlist 2005):[/i] For this maximal value of $r$, how many such labellings are there?
[hide="Easier version (5th German TST 2006) - contains answer to the harder version"]
[i]Easier version (5th German TST 2006):[/i] Show that, for this maximal value of $r$, there are exactly $\frac{n!\left(n-1\right)!}{2^{n-1}}$ possible labellings.[/hide]
[i]Proposed by Federico Ardila, Colombia[/i]