Found problems: 4776
2003 Italy TST, 3
Determine all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ that satisfy
\[f(f(x)+y)=2x+f(f(y)-x)\quad\text{for all real}\ x,y. \]
2006 Moldova National Olympiad, 11.2
Function $f: [a,b]\to\mathbb{R}$, $0<a<b$ is continuous on $[a,b]$ and differentiable on $(a,b)$. Prove that there exists $c\in(a,b)$ such that \[ f'(c)=\frac1{a-c}+\frac1{b-c}+\frac1{a+b}. \]
2013 SEEMOUS, Problem 1
Find all continuous functions $f:[1,8]\to\mathbb R$, such that
$$\int^2_1f(t^3)^2dt+2\int^2_1f(t^3)dt=\frac23\int^8_1f(t)dt-\int^2_1(t^2-1)^2dt.$$
2016 District Olympiad, 2
Let $ f:\mathbb{R}\longrightarrow (0,\infty ) $ be a continuous and periodic function having a period of $ 2, $ and such that the integral $ \int_0^2 \frac{f(1+x)}{f(x)} dx $ exists. Show that
$$ \int_0^2 \frac{f(1+x)}{f(x)} dx\ge 2, $$
with equality if and only if $ 1 $ is also a period of $ f. $
2008 CentroAmerican, 6
Let $ ABC$ be an acute triangle. Take points $ P$ and $ Q$ inside $ AB$ and $ AC$, respectively, such that $ BPQC$ is cyclic. The circumcircle of $ ABQ$ intersects $ BC$ again in $ S$ and the circumcircle of $ APC$ intersects $ BC$ again in $ R$, $ PR$ and $ QS$ intersect again in $ L$. Prove that the intersection of $ AL$ and $ BC$ does not depend on the selection of $ P$ and $ Q$.
2006 Hong Kong TST., 2
The function $f(x,y)$, defined on the set of all non-negative integers, satisfies
(i) $f(0,y)=y+1$
(ii) $f(x+1,0)=f(x,1)$
(iii) $f(x+1,y+1)=f(x,f(x+1,y))$
Find f(3,2005), f(4,2005)
2011 Kyrgyzstan National Olympiad, 7
Given that $g(n) = \frac{1}{{2 + \frac{1}{{3 + \frac{1}{{... + \frac{1}{{n - 1}}}}}}}}$ and $k(n) = \frac{1}{{2 + \frac{1}{{3 + \frac{1}{{... + \frac{1}{{n - 1 + \frac{1}{n}}}}}}}}}$, for natural $n$. Prove that $\left| {g(n) - k(n)} \right| \le \frac{1}{{(n - 1)!n!}}$.
2003 Pan African, 1
Let $N_0=\{0, 1, 2 \cdots \}$. Find all functions: $N_0 \to N_0$ such that:
(1) $f(n) < f(n+1)$, all $n \in N_0$;
(2) $f(2)=2$;
(3) $f(mn)=f(m)f(n)$, all $m, n \in N_0$.
1965 Miklós Schweitzer, 8
Let the continuous functions $ f_n(x), \; n\equal{}1,2,3,...,$ be defined on the interval $ [a,b]$ such that every point of $ [a,b]$ is a root of $ f_n(x)\equal{}f_m(x)$ for some $ n \not\equal{} m$. Prove that there exists a subinterval of $ [a,b]$ on which two of the functions are equal.
1978 Romania Team Selection Test, 2
Prove that there is a function $ F:\mathbb{N}\longrightarrow\mathbb{N} $ satisfying $ (F\circ F) (n) =n^2, $ for all $ n\in\mathbb{N} . $
1986 USAMO, 5
By a partition $\pi$ of an integer $n\ge 1$, we mean here a representation of $n$ as a sum of one or more positive integers where the summands must be put in nondecreasing order. (E.g., if $n=4$, then the partitions $\pi$ are $1+1+1+1$, $1+1+2$, $1+3, 2+2$, and $4$).
For any partition $\pi$, define $A(\pi)$ to be the number of $1$'s which appear in $\pi$, and define $B(\pi)$ to be the number of distinct integers which appear in $\pi$. (E.g., if $n=13$ and $\pi$ is the partition $1+1+2+2+2+5$, then $A(\pi)=2$ and $B(\pi) = 3$).
Prove that, for any fixed $n$, the sum of $A(\pi)$ over all partitions of $\pi$ of $n$ is equal to the sum of $B(\pi)$ over all partitions of $\pi$ of $n$.
2009 District Olympiad, 1
Let $ f:[0,\infty )\longrightarrow [0,\infty ) $ a nonincreasing function that satisfies the inequality:
$$ \int_0^x f(t)dt <1,\quad\forall x\ge 0. $$ Prove the following affirmations:
[b]a)[/b] $ \exists \lim_{x\to\infty} \int_0^x f(t)dt \in\mathbb{R} . $
[b]b)[/b] $ \lim_{x\to\infty} xf(x) =0. $
1995 Brazil National Olympiad, 2
Find all real-valued functions on the positive integers such that $f(x + 1019) = f(x)$ for all $x$, and $f(xy) = f(x) f(y)$ for all $x,y$.
2021 Iran Team Selection Test, 4
Assume $\Omega(n),\omega(n)$ be the biggest and smallest prime factors of $n$ respectively . Alireza and Amin decided to play a game. First Alireza chooses $1400$ polynomials with integer coefficients. Now Amin chooses $700$ of them, the set of polynomials of Alireza and Amin are $B,A$ respectively . Amin wins if for all $n$ we have :
$$\max_{P \in A}(\Omega(P(n))) \ge \min_{P \in B}(\omega(P(n)))$$
Who has the winning strategy.
Proposed by [i]Alireza Haghi[/i]
1998 Romania National Olympiad, 3
Suppose $f:\mathbb{R}\to\mathbb{R}$ is a differentiable function for which the inequality $f'(x) \leq f'(x+\frac{1}{n})$ holds for every $x\in\mathbb{R}$ and every $n\in\mathbb{N}$.Prove that f is continiously differentiable
2025 Bulgarian Spring Mathematical Competition, 9.4
Determine all functions $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ such that $f(a) + 2ab + 2f(b)$ divides $f(a)^2 + 4f(b)^2$ for any positive integers $a$ and $b$.
2008 German National Olympiad, 4
Find the smallest constant $ C$ such that for all real $ x,y$
\[ 1\plus{}(x\plus{}y)^2 \leq C \cdot (1\plus{}x^2) \cdot (1\plus{}y^2)\]
holds.
1982 IMO Shortlist, 1
The function $f(n)$ is defined on the positive integers and takes non-negative integer values. $f(2)=0,f(3)>0,f(9999)=3333$ and for all $m,n:$ \[ f(m+n)-f(m)-f(n)=0 \text{ or } 1. \] Determine $f(1982)$.
1989 IMO Longlists, 97
An arithmetic function is a real-valued function whose domain is the set of positive integers. Define the convolution product of two arithmetic functions $ f$ and $ g$ to be the arithmetic function $ f * g$, where \[ (f * g)(n) \equal{} \sum_{ij\equal{}n} f(i) \cdot g(j),\] and $ f^{*k} \equal{} f * f * \ldots * f$ ($ k$ times) We say that two arithmetic functions $ f$ and $ g$ are dependent if there exists a nontrivial polynomial of two variables $ P(x, y) \equal{} \sum_{i,j} a_{ij} x^i y^j$ with real coefficients such that
\[ P(f,g) \equal{} \sum_{i,j} a_{ij} f^{*i} * g^{*j} \equal{} 0,\]
and say that they are independent if they are not dependent. Let $ p$ and $ q$ be two distinct primes and set
\[ f_1(n) \equal{} \begin{cases} 1 & \text{ if } n \equal{} p, \\
0 & \text{ otherwise}. \end{cases}\]
\[ f_2(n) \equal{} \begin{cases} 1 & \text{ if } n \equal{} q, \\
0 & \text{ otherwise}. \end{cases}\]
Prove that $ f_1$ and $ f_2$ are independent.
2018 Pan-African Shortlist, A5
Let $g : \mathbb{N} \to \mathbb{N}$ be a function satisfying:
[list]
[*] $g(xy) = g(x)g(y)$ for all $x, y \in \mathbb{N}$,
[*] $g(g(x)) = x$ for all $x \in \mathbb{N}$, and
[*] $g(x) \neq x$ for $2 \leq x \leq 2018$.
[/list]
Find the minimum possible value of $g(2)$.
2003 India IMO Training Camp, 3
Find all functions $f: \mathbb R \to \mathbb R$ such that for all reals $x$ and $y$,
\[f(x+y)+f(x)f(y)=f(xy)+f(x)+f(y).\]
STEMS 2021 Math Cat C, Q1
Let $M>1$ be a natural number. Tom and Jerry play a game. Jerry wins if he can produce a function $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfying
[list]
[*]$f(M) \ne M$ [/*]
[*] $f(k)<2k$ for all $k \in \mathbb{N}$[/*]
[*] $f^{f(n)}(n)=n$ for all $n \in \mathbb{N}$. For each $\ell>0$ we define $f^{\ell}(n)=f\left(f^{\ell-1}(n)\right)$ and $f^0(n)=n$[/*]
[/list]
Tom wins otherwise. Prove that for infinitely many $M$, Tom wins, and for infinitely many $M$, Jerry wins.
[i]Proposed by Anant Mudgal[/i]
2009 IMS, 3
Let $ A\subset \mathbb C$ be a closed and countable set. Prove that if the analytic function $ f: \mathbb C\backslash A\longrightarrow \mathbb C$ is bounded, then $ f$ is constant.
2005 ISI B.Math Entrance Exam, 5
Find the point in the closed unit disc $D=\{ (x,y) | x^2+y^2\le 1 \}$ at which the function $f(x,y)=x+y$ attains its maximum .
2013 Princeton University Math Competition, 6
Suppose the function $\psi$ satisfies $\psi(1)=\sqrt{2+\sqrt{2+\sqrt2}}$ and $\psi(3x)+3\psi(x)=\psi(x)^3$ for all real $x$. Determine the greatest integer less than $\textstyle\prod_{n=1}^{100}\psi(3^n)$.