This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2009 Romania Team Selection Test, 1

Given two (identical) polygonal domains in the Euclidean plane, it is not possible in general to superpose the two using only translations and rotations. Prove that this can however be achieved by splitting one of the domains into a finite number of polygonal subdomains which then fit together, via translations and rotations in the plane, to recover the other domain.

2009 Jozsef Wildt International Math Competition, W. 10

Tags: set , function
Let consider the following function set $$F=\{f\ |\ f:\{1,\ 2,\ \cdots,\ n\}\to \{1,\ 2,\ \cdots,\ n\} \}$$ [list=1] [*] Find $|F|$ [*] For $n=2k$ prove that $|F|< e{(4k)}^{k}$ [*] Find $n$, if $|F|=540$ and $n=2k$ [/list]

2013 ELMO Shortlist, 14

Let $O$ be a point (in the plane) and $T$ be an infinite set of points such that $|P_1P_2| \le 2012$ for every two distinct points $P_1,P_2\in T$. Let $S(T)$ be the set of points $Q$ in the plane satisfying $|QP| \le 2013$ for at least one point $P\in T$. Now let $L$ be the set of lines containing exactly one point of $S(T)$. Call a line $\ell_0$ passing through $O$ [i]bad[/i] if there does not exist a line $\ell\in L$ parallel to (or coinciding with) $\ell_0$. (a) Prove that $L$ is nonempty. (b) Prove that one can assign a line $\ell(i)$ to each positive integer $i$ so that for every bad line $\ell_0$ passing through $O$, there exists a positive integer $n$ with $\ell(n) = \ell_0$. [i]Proposed by David Yang[/i]

1993 China Team Selection Test, 2

Let $n \geq 2, n \in \mathbb{N}$, $a,b,c,d \in \mathbb{N}$, $\frac{a}{b} + \frac{c}{d} < 1$ and $a + c \leq n,$ find the maximum value of $\frac{a}{b} + \frac{c}{d}$ for fixed $n.$

2011 Kazakhstan National Olympiad, 6

Determine all pairs of positive real numbers $(a, b)$ for which there exists a function $ f:\mathbb{R^{+}}\rightarrow\mathbb{R^{+}} $ satisfying for all positive real numbers $x$ the equation $ f(f(x))=af(x)- bx $

2001 Baltic Way, 11

Tags: function , algebra
The real-valued function $f$ is defined for all positive integers. For any integers $a>1, b>1$ with $d=\gcd (a, b)$, we have \[f(ab)=f(d)\left(f\left(\frac{a}{d}\right)+f\left(\frac{b}{d}\right)\right) \] Determine all possible values of $f(2001)$.

1991 French Mathematical Olympiad, Problem 2

Tags: limit , algebra , function
For each $n\in\mathbb N$, the function $f_n$ is defined on real numbers $x\ge n$ by $$f_n(x)=\sqrt{x-n}+\sqrt{x-n+1}+\ldots+\sqrt{x+n}-(2n+1)\sqrt x.$$(a) If $n$ is fixed, prove that $\lim_{x\to+\infty}f_n(x)=0$. (b) Find the limit of $f_n(n)$ as $n\to+\infty$.

2019 CCA Math Bonanza, L3.4

Determine the maximum possible value of \[\frac{\left(x^2+5x+12\right)\left(x^2+5x-12\right)\left(x^2-5x+12\right)\left(-x^2+5x+12\right)}{x^4}\] over all non-zero real numbers $x$. [i]2019 CCA Math Bonanza Lightning Round #3.4[/i]

1989 National High School Mathematics League, 9

Tags: function , geometry
Functions $f_0(x)=|x|,f_1(x)=|f_0(x)-1|,f_2(x)=|f_1(x)-2|$. Area of the closed part between the figure of $f_2(x)$ and $x$-axis is________.

2025 Greece National Olympiad, 3

Let $f(x):\mathbb {Q} \rightarrow \mathbb {Q}$ be a function satisfying $f(x+2y)+f(2x-y)=5f(x)+5f(y)$ Find all such functions.

2005 Putnam, A6

Let $n$ be given, $n\ge 4,$ and suppose that $P_1,P_2,\dots,P_n$ are $n$ randomly, independently and uniformly, chosen points on a circle. Consider the convex $n$-gon whose vertices are the $P_i.$ What is the probability that at least one of the vertex angles of this polygon is acute.?

1983 Miklós Schweitzer, 12

Let $ X_1,X_2,\ldots, X_n$ be independent, identically distributed, nonnegative random variables with a common continuous distribution function $ F$. Suppose in addition that the inverse of $ F$, the quantile function $ Q$, is also continuous and $ Q(0)=0$. Let $ 0=X_{0: n} \leq X_{1: n} \leq \ldots \leq X_{n: n}$ be the ordered sample from the above random variables. Prove that if $ EX_1$ is finite, then the random variable \[ \Delta = \sup_{0\leq y \leq 1} \left| \frac 1n \sum_{i=1}^{\lfloor ny \rfloor +1} (n+1-i)(X_{i: n}-X_{i-1: n})- \int_0^y (1-u)dQ(u) \right|\] tends to zero with probability one as $ n \rightarrow \infty$. [i]S. Csorgp, L. Horvath[/i]

1992 Romania Team Selection Test, 1

Suppose that$ f : N \to N$ is an increasing function such that $f(f(n)) = 3n$ for all $n$. Find $f(1992)$.

2018-2019 Winter SDPC, 6

Let $S$ be the set of positive perfect squares that are of the form $\overline{AA}$, i.e. the concatenation of two equal integers $A$. (Integers are not allowed to start with zero.) (a) Prove that $S$ is infinite. (b) Does there exist a function $f:S\times S \rightarrow S$ such that if $a,b,c \in S$ and $a,b | c$, then $f(a,b) | c$? (If such a function $f$ exists, we call $f$ an LCM function)

2007 Indonesia TST, 2

Tags: function , algebra
Find all functions $ f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying \[ f(f(x \plus{} y)) \equal{} f(x \plus{} y) \plus{} f(x)f(y) \minus{} xy\] for all real numbers $x$ and $y$.

2007 Today's Calculation Of Integral, 215

For $ a\in\mathbb{R}$, let $ M(a)$ be the maximum value of the function $ f(x)\equal{}\int_{0}^{\pi}\sin (x\minus{}t)\sin (2t\minus{}a)\ dt$. Evaluate $ \int_{0}^{\frac{\pi}{2}}M(a)\sin (2a)\ da$.

2009 Turkey MO (2nd round), 2

Show that \[ \frac{(b+c)(a^4-b^2c^2)}{ab+2bc+ca}+\frac{(c+a)(b^4-c^2a^2)}{bc+2ca+ab}+\frac{(a+b)(c^4-a^2b^2)}{ca+2ab+bc} \geq 0 \] for all positive real numbers $a, \: b , \: c.$

2009 China Girls Math Olympiad, 5

Let $ x,y,z$ be real numbers greater than or equal to $ 1.$ Prove that \[ \prod(x^{2} \minus{} 2x \plus{} 2)\le (xyz)^{2} \minus{} 2xyz \plus{} 2.\]

1982 IMO Longlists, 42

Let $\mathfrak F$ be the family of all $k$-element subsets of the set $\{1, 2, \ldots, 2k + 1\}$. Prove that there exists a bijective function $f :\mathfrak F \to \mathfrak F$ such that for every $A \in \mathfrak F$, the sets $A$ and $f(A)$ are disjoint.

2007 China Team Selection Test, 1

Find all functions $ f: \mathbb{Q}^{\plus{}} \mapsto \mathbb{Q}^{\plus{}}$ such that: \[ f(x) \plus{} f(y) \plus{} 2xy f(xy) \equal{} \frac {f(xy)}{f(x\plus{}y)}.\]

2016 VJIMC, 1

Let $f: \mathbb{R} \to (0, \infty)$ be a continuously differentiable function. Prove that there exists $\xi \in (0,1)$ such that $$e^{f'(\xi)} \cdot f(0)^{f(\xi)} = f(1)^{f(\xi)}$$

2001 Stanford Mathematics Tournament, 10

Tags: function , college
You know that the binary function $\diamond$ takes in two non-negative integers and has the following properties: \begin{align*}0\diamond a&=1\\ a\diamond a&=0\end{align*} $\text{If } a<b, \text{ then } a\diamond b\&=(b-a)[(a-1)\diamond (b-1)].$ Find a general formula for $x\diamond y$, assuming that $y\gex>0$.

2014 Online Math Open Problems, 27

Let $p = 2^{16}+1$ be a prime, and let $S$ be the set of positive integers not divisible by $p$. Let $f: S \to \{0, 1, 2, ..., p-1\}$ be a function satisfying \[ f(x)f(y) \equiv f(xy)+f(xy^{p-2}) \pmod{p} \quad\text{and}\quad f(x+p) = f(x) \] for all $x,y \in S$. Let $N$ be the product of all possible nonzero values of $f(81)$. Find the remainder when when $N$ is divided by $p$. [i]Proposed by Yang Liu and Ryan Alweiss[/i]

2014 Korea National Olympiad, 4

Prove that there exists a function $f : \mathbb{N} \rightarrow \mathbb{N}$ that satisfies the following (1) $\{f(n) : n\in\mathbb{N}\}$ is a finite set; and (2) For nonzero integers $x_1, x_2, \ldots, x_{1000}$ that satisfy $f(\left|x_1\right|)=f(\left|x_2\right|)=\cdots=f(\left|x_{1000}\right|)$, then $x_1+2x_2+2^2x_3+2^3x_4+2^4x_5+\cdots+2^{999}x_{1000}\ne 0$.

1973 IMO Shortlist, 17

$G$ is a set of non-constant functions $f$. Each $f$ is defined on the real line and has the form $f(x)=ax+b$ for some real $a,b$. If $f$ and $g$ are in $G$, then so is $fg$, where $fg$ is defined by $fg(x)=f(g(x))$. If $f$ is in $G$, then so is the inverse $f^{-1}$. If $f(x)=ax+b$, then $f^{-1}(x)= \frac{x-b}{a}$. Every $f$ in $G$ has a fixed point (in other words we can find $x_f$ such that $f(x_f)=x_f$. Prove that all the functions in $G$ have a common fixed point.