This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2006 Iran Team Selection Test, 1

Suppose that $p$ is a prime number. Find all natural numbers $n$ such that $p|\varphi(n)$ and for all $a$ such that $(a,n)=1$ we have \[ n|a^{\frac{\varphi(n)}{p}}-1 \]

2005 Today's Calculation Of Integral, 90

Find $\lim_{n\to\infty} \left(\frac{_{3n}C_n}{_{2n}C_n}\right)^{\frac{1}{n}}$ where $_iC_j$ is a binominal coefficient which means $\frac{i\cdot (i-1)\cdots(i-j+1)}{j\cdot (j-1)\cdots 2\cdot 1}$.

2017 South East Mathematical Olympiad, 1

Tags: function , algebra
Let $x_i \in \{0, 1\} (i = 1, 2, \cdots, n)$. If the function $f = f(x_1, x_2, \cdots, x_n)$ only equals $0$ or $1$, then define $f$ as an "$n$-variable Boolean function" and denote $$D_n (f) = \{ (x_1, x_2, \cdots, x_n) | f(x_1, x_2, \cdots, x_n) = 0 \}$$. $(1)$ Determine the number of $n$-variable Boolean functions; $(2)$ Let $g$ be a $10$-variable Boolean function satisfying $$g(x_1, x_2, \cdots, x_{10}) \equiv 1 + x_1 + x_1 x_2 + x_1 x_2 x_3 + \cdots + x_1 x_2\cdots x_{10} \pmod{2}$$ Evaluate the size of the set $D_{10} (g)$ and $\sum\limits_{(x_1, x_2, \cdots, x_{10}) \in D_{10} (g)} (x_1 + x_2 + x_3 + \cdots + x_{10})$.

2014 PUMaC Algebra B, 2

$f$ is a function whose domain is the set of nonnegative integers and whose range is contained in the set of nonnegative integers. $f$ satisfies the condition that $f(f(n))+f(n)=2n+3$ for all nonnegative integers $n$. Find $f(2014)$.

1988 IMO Longlists, 27

Assuming that the roots of $x^3 + p \cdot x^2 + q \cdot x + r = 0$ are real and positive, find a relation between $p,q$ and $r$ which gives a necessary condition for the roots to be exactly the cosines of the three angles of a triangle.

2015 Thailand TSTST, 1

Tags: function , algebra
Find all functions $f: \mathbb R \to \mathbb R$ such that for all reals $x$ and $y$, \[f(f(x)-y^{2})=f(x)^{2}-2f(x)y^{2}+f(f(y)).\]

2012 Balkan MO Shortlist, A5

Let $f, g:\mathbb{Z}\rightarrow [0,\infty )$ be two functions such that $f(n)=g(n)=0$ with the exception of finitely many integers $n$. Define $h:\mathbb{Z}\rightarrow [0,\infty )$ by \[h(n)=\max \{f(n-k)g(k): k\in\mathbb{Z}\}.\] Let $p$ and $q$ be two positive reals such that $1/p+1/q=1$. Prove that \[ \sum_{n\in\mathbb{Z}}h(n)\geq \Bigg(\sum_{n\in\mathbb{Z}}f(n)^p\Bigg)^{1/p}\Bigg(\sum_{n\in\mathbb{Z}}g(n)^q\Bigg)^{1/q}.\]

2018 Nepal National Olympiad, 2c

Tags: algebra , function
[b]Problem Section #2 c). Denote by $\mathbb{Q^+}$ the set of all positive rational numbers. Determine all functions $f:\mathbb{Q^+}\to\mathbb{Q^+}$ which satisfy the following equation for all $x,y \in \mathbb{Q^+} : f(f(x)^2.y)=x^3.f(xy)$.

2001 Romania Team Selection Test, 4

Consider a convex polyhedron $P$ with vertices $V_1,\ldots ,V_p$. The distinct vertices $V_i$ and $V_j$ are called [i]neighbours[/i] if they belong to the same face of the polyhedron. To each vertex $V_k$ we assign a number $v_k(0)$, and construct inductively the sequence $v_k(n)\ (n\ge 0)$ as follows: $v_k(n+1)$ is the average of the $v_j(n)$ for all neighbours $V_j$ of $V_k$ . If all numbers $v_k(n)$ are integers, prove that there exists the positive integer $N$ such that all $v_k(n)$ are equal for $n\ge N$ .

2010 Today's Calculation Of Integral, 620

Let $a,\ b$ be real numbers. Suppose that a function $f(x)$ satisfies $f(x)=a\sin x+b\cos x+\int_{-\pi}^{\pi} f(t)\cos t\ dt$ and has the maximum value $2\pi$ for $-\pi \leq x\leq \pi$. Find the minimum value of $\int_{-\pi}^{\pi} \{f(x)\}^2dx.$ [i]2010 Chiba University entrance exam[/i]

2016 Moldova Team Selection Test, 2

Let $p$ be a prime number of the form $4k+1$. Show that \[\sum^{p-1}_{i=1}\left( \left \lfloor \frac{2i^{2}}{p}\right \rfloor-2\left \lfloor \frac{i^{2}}{p}\right \rfloor \right) = \frac{p-1}{2}.\]

2001 Turkey Team Selection Test, 1

Each one of $2001$ children chooses a positive integer and writes down his number and names of some of other $2000$ children to his notebook. Let $A_c$ be the sum of the numbers chosen by the children who appeared in the notebook of the child $c$. Let $B_c$ be the sum of the numbers chosen by the children who wrote the name of the child $c$ into their notebooks. The number $N_c = A_c - B_c$ is assigned to the child $c$. Determine whether all of the numbers assigned to the children could be positive.

2008 AIME Problems, 12

On a long straight stretch of one-way single-lane highway, cars all travel at the same speed and all obey the safety rule: the distance from the back of the car ahead to the front of the car behind is exactly one car length for each 15 kilometers per hour of speed or fraction thereof (Thus the front of a car traveling 52 kilometers per hour will be four car lengths behind the back of the car in front of it.) A photoelectric eye by the side of the road counts the number of cars that pass in one hour. Assuming that each car is 4 meters long and that the cars can travel at any speed, let $ M$ be the maximum whole number of cars that can pass the photoelectric eye in one hour. Find the quotient when $ M$ is divided by 10.

2001 Switzerland Team Selection Test, 6

A function $f : [0,1] \to R$ has the following properties: (a) $f(x) \ge 0$ for $0 < x < 1$, (b) $f(1) = 1$, (c) $f(x+y) \ge f(x)+ f(y) $ whenever $x,y,x+y \in [0,1]$. Prove that $f(x) \le 2x$ for all $x \in [0,1]$.

2011 Korea National Olympiad, 3

Let $a,b,c,d$ real numbers such that $a+b+c+d=19$ and $a^2+b^2+c^2+d^2=91$. Find the maximum value of \[ \frac{1}{a} +\frac{1}{b} +\frac{1}{c} +\frac{1}{d} \]

2006 AMC 10, 21

For a particular peculiar pair of dice, the probabilities of rolling 1, 2, 3, 4, 5 and 6 on each die are in the ratio $ 1: 2: 3: 4: 5: 6$. What is the probability of rolling a total of 7 on the two dice? $ \textbf{(A) } \frac 4{63} \qquad \textbf{(B) } \frac 18 \qquad \textbf{(C) } \frac 8{63} \qquad \textbf{(D) } \frac 16 \qquad \textbf{(E) } \frac 27$

1989 Austrian-Polish Competition, 7

Functions $f_0, f_1,f_2,...$ are recursively defined by $f_0(x) = x$ and $f_{2k+1} (x) = 3^{f_{2k}(x)}$ and $f_{2k+2} = 2^{f_{2k+1}(x)}$, $k = 0,1,2,...$ for all $x \in R$. Find the greater one of the numbers $f_{10}(1)$ and $f_9(2)$.

2024 Irish Math Olympiad, P3

Let $\mathbb{Z}_+=\{1,2,3,4...\}$ be the set of all positive integers. Determine all functions $f : \mathbb{Z}_+ \mapsto \mathbb{Z}_+$ that satisfy: [list] [*]$f(mn)+1=f(m)+f(n)$ for all positive integers $m$ and $n$; [*]$f(2024)=1$; [*]$f(n)=1$ for all positive $n\equiv22\pmod{23}$. [/list]

2016 Rioplatense Mathematical Olympiad, Level 3, 4

Let $c > 1$ be a real number. A function $f: [0 ,1 ] \to R$ is called c-friendly if $f(0) = 0, f(1) = 1$ and $|f(x) -f(y)| \le c|x - y|$ for all the numbers $x ,y \in [0,1]$. Find the maximum of the expression $|f(x) - f(y)|$ for all [i]c-friendly[/i] functions $f$ and for all the numbers $x,y \in [0,1]$.

2014 Romania National Olympiad, 3

Tags: algebra , function
Let $ n $ be a natural number, and $ A $ the set of the first $ n $ natural numbers. Find the number of nondecreasing functions $ f:A\longrightarrow A $ that have the property $$ x,y\in A\implies |f(x)-f(y)|\le |x-y|. $$

1969 Miklós Schweitzer, 6

Let $ x_0$ be a fixed real number, and let $ f$ be a regular complex function in the half-plane $ \Re z>x_0$ for which there exists a nonnegative function $ F \in L_1(- \infty, +\infty)$ satisfying $ |f(\alpha+i\beta)| \leq F(\beta)$ whenever $ \alpha > x_0$ , $ -\infty <\beta < +\infty$. Prove that \[ \int_{\alpha-i \infty} ^{\alpha+i \infty} f(z)dz=0.\] [i]L. Czach[/i]

1947 Putnam, A2

A real valued continuous function $f$ satisfies for all real $x$ and $y$ the functional equation $$ f(\sqrt{x^2 +y^2 })= f(x)f(y).$$ Prove that $$f(x) =f(1)^{x^{2}}.$$

1979 IMO Longlists, 74

Given an equilateral triangle $ABC$ of side $a$ in a plane, let $M$ be a point on the circumcircle of the triangle. Prove that the sum $s = MA^4 +MB^4 +MC^4$ is independent of the position of the point $M$ on the circle, and determine that constant value as a function of $a$.

1995 AMC 12/AHSME, 12

Hi guys, I was just reading over old posts that I made last year ( :P ) and saw how much the level of Getting Started became harder. To encourage more people from posting, I decided to start a Problem of the Day. This is how I'll conduct this: 1. In each post (not including this one since it has rules, etc) everyday, I'll post the problem. I may post another thread after it to give hints though. 2. Level of problem.. This is VERY important. All problems in this thread will be all AHSME or problems similar to this level. No AIME. Some AHSME problems, however, that involve tough insight or skills will not be posted. The chosen problems will be usually ones that everyone can solve after working. Calculators are allowed when you solve problems but it is NOT necessary. 3. Response.. All you have to do is simply solve the problem and post the solution. There is no credit given or taken away if you get the problem wrong. This isn't like other threads where the number of problems you get right or not matters. As for posting, post your solutions here in this thread. Do NOT PM me. Also, here are some more restrictions when posting solutions: A. No single answer post. It doesn't matter if you put hide and say "Answer is ###..." If you don't put explanation, it simply means you cheated off from some other people. I've seen several posts that went like "I know the answer" and simply post the letter. What is the purpose of even posting then? Huh? B. Do NOT go back to the previous problem(s). This causes too much confusion. C. You're FREE to give hints and post different idea, way or answer in some cases in problems. If you see someone did wrong or you don't understand what they did, post here. That's what this thread is for. 4. Main purpose.. This is for anyone who visits this forum to enjoy math. I rememeber when I first came into this forum, I was poor at math compared to other people. But I kindly got help from many people such as JBL, joml88, tokenadult, and many other people that would take too much time to type. Perhaps without them, I wouldn't be even a moderator in this forum now. This site clearly made me to enjoy math more and more and I'd like to do the same thing. That's about the rule.. Have fun problem solving! Next post will contain the Day 1 Problem. You can post the solutions until I post one. :D

2010 Contests, 1

A function $f : \mathbb{Z}_+ \to \mathbb{Z}_+$, where $\mathbb{Z}_+$ is the set of positive integers, is non-decreasing and satisfies $f(mn) = f(m)f(n)$ for all relatively prime positive integers $m$ and $n$. Prove that $f(8)f(13) \ge (f(10))^2$.