Found problems: 95
1998 Gauss, 17
Claire takes a square piece of paper and folds it in half four times without unfolding, making an
isosceles right triangle each time. After unfolding the paper to form a square again, the creases on the
paper would look like
2008 Romania Team Selection Test, 1
Let $ ABCD$ be a convex quadrilateral and let $ O \in AC \cap BD$, $ P \in AB \cap CD$, $ Q \in BC \cap DA$. If $ R$ is the orthogonal projection of $ O$ on the line $ PQ$ prove that the orthogonal projections of $ R$ on the sidelines of $ ABCD$ are concyclic.
1998 Gauss, 10
At the waterpark, Bonnie and Wendy decided to race each other down a waterslide. Wendy won by
$0.25$ seconds. If Bonnie’s time was exactly $7.80$ seconds, how long did it take for Wendy to go down
the slide?
$\textbf{(A)}\ 7.80~ \text{seconds} \qquad \textbf{(B)}\ 8.05~ \text{seconds} \qquad \textbf{(C)}\ 7.55~ \text{seconds} \qquad \textbf{(D)}\ 7.15~ \text{seconds} \qquad $
$\textbf{(E)}\ 7.50~ \text{seconds}$
2009 Miklós Schweitzer, 10
Let $ U\subset\mathbb R^n$ be an open set, and let $ L: U\times\mathbb R^n\to\mathbb R$ be a continuous, in its second variable first order positive homogeneous, positive over $ U\times (\mathbb R^n\setminus\{0\})$ and of $ C^2$-class Langrange function, such that for all $ p\in U$ the Gauss-curvature of the hyper surface
\[ \{ v\in\mathbb R^n \mid L(p,v) \equal{} 1 \}\]
is nowhere zero. Determine the extremals of $ L$ if it satisfies the following system
\[ \sum_{k \equal{} 1}^n y^k\partial_k\partial_{n \plus{} i}L \equal{} \sum_{k \equal{} 1}^n y^k\partial_i\partial_{n \plus{} k} L \qquad (i\in\{1,\dots,n\})\]
of partial differetial equations, where $ y^k(u,v) : \equal{} v^k$ for $ (u,v)\in U\times\mathbb R^k$, $ v \equal{} (v^1,\dots,v^k)$.
2007 Bulgaria Team Selection Test, 3
Let $I$ be the center of the incircle of non-isosceles triangle $ABC,A_{1}=AI\cap BC$ and $B_{1}=BI\cap AC.$ Let $l_{a}$ be the line through $A_{1}$ which is parallel to $AC$ and $l_{b}$ be the line through $B_{1}$ parallel to $BC.$ Let $l_{a}\cap CI=A_{2}$ and $l_{b}\cap CI=B_{2}.$ Also $N=AA_{2}\cap BB_{2}$ and $M$ is the midpoint of $AB.$ If $CN\parallel IM$ find $\frac{CN}{IM}$.
2008 Mongolia Team Selection Test, 2
Given positive integers$ m,n$ such that $ m < n$. Integers $ 1,2,...,n^2$ are arranged in $ n \times n$ board. In each row, $ m$ largest number colored red. In each column $ m$ largest number colored blue. Find the minimum number of cells such that colored both red and blue.
1998 Gauss, 7
A rectangular field is 80 m long and 60 m wide. If fence posts are placed at the corners and are 10 m
apart along the 4 sides of the field, how many posts are needed to completely fence the field?
$\textbf{(A)}\ 24 \qquad \textbf{(B)}\ 26 \qquad \textbf{(C)}\ 28 \qquad \textbf{(D)}\ 30 \qquad \textbf{(E)}\ 32$
1999 Gauss, 20
The first 9 positive odd integers are placed in the magic square so that the sum of the numbers in each row, column and diagonal are equal. Find the value of $A + E$.
\[ \begin{tabular}{|c|c|c|}\hline A & 1 & B \\ \hline 5 & C & 13\\ \hline D & E & 3 \\ \hline\end{tabular} \]
$\textbf{(A)}\ 32 \qquad \textbf{(B)}\ 28 \qquad \textbf{(C)}\ 26 \qquad \textbf{(D)}\ 24 \qquad \textbf{(E)}\ 16$
1998 Gauss, 18
The letters of the word ‘GAUSS’ and the digits in the number ‘1998’ are each cycled separately and
then numbered as shown.
1. AUSSG 9981
2. USSGA 9819
3. SSGAU 8199
etc.
If the pattern continues in this way, what number will appear in front of GAUSS 1998?
$\textbf{(A)}\ 4 \qquad \textbf{(B)}\ 5 \qquad \textbf{(C)}\ 9 \qquad \textbf{(D)}\ 16 \qquad \textbf{(E)}\ 20$
1999 Gauss, 2
The integer 287 is exactly divisible by
$\textbf{(A)}\ 3 \qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 7 \qquad \textbf{(E)}\ 6$
1998 Gauss, 4
Jean writes five tests and achieves the marks shown on the
graph. What is her average mark on these five tests?
[asy]
draw(origin -- (0, 10.1));
for(int i = 0; i < 11; ++i) {
draw((0, i) -- (10.5, i));
label(string(10*i), (0, i), W);
}
filldraw((1, 0) -- (1, 8) -- (2, 8) -- (2, 0) -- cycle, black);
filldraw((3, 0) -- (3, 7) -- (4, 7) -- (4, 0) -- cycle, black);
filldraw((5, 0) -- (5, 6) -- (6, 6) -- (6, 0) -- cycle, black);
filldraw((7, 0) -- (7, 9) -- (8, 9) -- (8, 0) -- cycle, black);
filldraw((9, 0) -- (9, 8) -- (10, 8) -- (10, 0) -- cycle, black);
label("Test Marks", (5, 0), S);
label(rotate(90)*"Marks out of 100", (-2, 5), W);
[/asy]
$\textbf{(A)}\ 74 \qquad \textbf{(B)}\ 76 \qquad \textbf{(C)}\ 70 \qquad \textbf{(D)}\ 64 \qquad \textbf{(E)}\ 79$
1998 Gauss, 16
Each of the digits 3, 5, 6, 7, and 8 is placed one to a box in
the diagram. If the two digit number is subtracted from the
three digit number, what is the smallest difference?
$\textbf{(A)}\ 269 \qquad \textbf{(B)}\ 278 \qquad \textbf{(C)}\ 484 \qquad \textbf{(D)}\ 271 \qquad \textbf{(E)}\ 261$
2013 India IMO Training Camp, 3
We define an operation $\oplus$ on the set $\{0, 1\}$ by
\[ 0 \oplus 0 = 0 \,, 0 \oplus 1 = 1 \,, 1 \oplus 0 = 1 \,, 1 \oplus 1 = 0 \,.\]
For two natural numbers $a$ and $b$, which are written in base $2$ as $a = (a_1a_2 \ldots a_k)_2$ and $b = (b_1b_2 \ldots b_k)_2$ (possibly with leading 0's), we define $a \oplus b = c$ where $c$ written in base $2$ is $(c_1c_2 \ldots c_k)_2$ with $c_i = a_i \oplus b_i$, for $1 \le i \le k$. For example, we have $7 \oplus 3 = 4$ since $ 7 = (111)_2$ and $3 = (011)_2$.
For a natural number $n$, let $f(n) = n \oplus \left[ n/2 \right]$, where $\left[ x \right]$ denotes the largest integer less than or equal to $x$. Prove that $f$ is a bijection on the set of natural numbers.
1999 Gauss, 5
Which one of the following gives an odd integer?
$\textbf{(A)}\ 6^2 \qquad \textbf{(B)}\ 23-17 \qquad \textbf{(C)}\ 9\times24 \qquad \textbf{(D)}\ 96\div8 \qquad \textbf{(E)}\ 9\times41$
2008 China Team Selection Test, 3
Let $ z_{1},z_{2},z_{3}$ be three complex numbers of moduli less than or equal to $ 1$. $ w_{1},w_{2}$ are two roots of the equation $ (z \minus{} z_{1})(z \minus{} z_{2}) \plus{} (z \minus{} z_{2})(z \minus{} z_{3}) \plus{} (z \minus{} z_{3})(z \minus{} z_{1}) \equal{} 0$. Prove that, for $ j \equal{} 1,2,3$, $\min\{|z_{j} \minus{} w_{1}|,|z_{j} \minus{} w_{2}|\}\leq 1$ holds.
2008 District Olympiad, 4
Let $ ABCD$ be a cyclic quadrilater. Denote $ P\equal{}AD\cap BC$ and $ Q\equal{}AB \cap CD$. Let $ E$ be the fourth vertex of the parallelogram $ ABCE$ and $ F\equal{}CE\cap PQ$. Prove that $ D,E,F$ and $ Q$ lie on the same circle.
1998 Gauss, 12
Steve plants ten trees every three minutes. If he continues planting at the same rate, how long will it
take him to plant 2500 trees?
$\textbf{(A)}\ 1~1/4 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 10 \qquad \textbf{(E)}\ 12~1/2$
1999 Gauss, 15
A box contains 36 pink, 18 blue, 9 green, 6 red, and 3 purple cubes that are identical in size. If a cube is selected at random, what is the probability that it is green?
$\textbf{(A)}\ \dfrac{1}{9} \qquad \textbf{(B)}\ \dfrac{1}{8} \qquad \textbf{(C)}\ \dfrac{1}{5} \qquad \textbf{(D)}\ \dfrac{1}{4} \qquad \textbf{(E)}\ \dfrac{9}{70}$
1999 Gauss, 8
The average of 10, 4, 8, 7, and 6 is
$\textbf{(A)}\ 33 \qquad \textbf{(B)}\ 13 \qquad \textbf{(C)}\ 35 \qquad \textbf{(D)}\ 10 \qquad \textbf{(E)}\ 7$
2007 Bulgaria Team Selection Test, 3
Let $I$ be the center of the incircle of non-isosceles triangle $ABC,A_{1}=AI\cap BC$ and $B_{1}=BI\cap AC.$ Let $l_{a}$ be the line through $A_{1}$ which is parallel to $AC$ and $l_{b}$ be the line through $B_{1}$ parallel to $BC.$ Let $l_{a}\cap CI=A_{2}$ and $l_{b}\cap CI=B_{2}.$ Also $N=AA_{2}\cap BB_{2}$ and $M$ is the midpoint of $AB.$ If $CN\parallel IM$ find $\frac{CN}{IM}$.
1998 Gauss, 20
Each of the 12 edges of a cube is coloured either red or green. Every face of the cube has at least one
red edge. What is the smallest number of red edges?
$\textbf{(A)}\ 2 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ 6$
1998 Gauss, 19
Juan and Mary play a two-person game in which the winner gains 2 points and the loser loses 1 point.
If Juan won exactly 3 games and Mary had a final score of 5 points, how many games did they play?
$\textbf{(A)}\ 7 \qquad \textbf{(B)}\ 8 \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ 11$
2013 AIME Problems, 3
A large candle is $119$ centimeters tall. It is designed to burn down more quickly when it is first lit and more slowly as it approaches its bottom. Specifically, the candle takes $10$ seconds to burn down the first centimeter from the top, $20$ seconds to burn down the second centimeter, and $10k$ seconds to burn down the $k$-th centimeter. Suppose it takes $T$ seconds for the candle to burn down completely. Then $\tfrac{T}{2}$ seconds after it is lit, the candle's height in centimeters will be $h$. Find $10h$.
1999 Gauss, 12
Five students named Fred, Gail, Henry, Iggy, and Joan are seated around a circular table in that order. To decide who goes first in a game, they play “countdown”. Henry starts by saying ‘34’, with Iggy saying ‘33’. If they continue to count down in their circular order, who will eventually say ‘1’?
$\textbf{(A)}\ \text{Fred} \qquad \textbf{(B)}\ \text{Gail} \qquad \textbf{(C)}\ \text{Henry} \qquad \textbf{(D)}\ \text{Iggy} \qquad \textbf{(E)}\ \text{Joan}$
1949 Miklós Schweitzer, 7
Find the complex numbers $ z$ for which the series
\[ 1 \plus{} \frac {z}{2!} \plus{} \frac {z(z \plus{} 1)}{3!} \plus{} \frac {z(z \plus{} 1)(z \plus{} 2)}{4!} \plus{} \cdots \plus{} \frac {z(z \plus{} 1)\cdots(z \plus{} n)}{(n \plus{} 2)!} \plus{} \cdots\]
converges and find its sum.