This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 122

2015 Tournament of Towns, 1

A geometrical progression consists of $37$ positive integers. The first and the last terms are relatively prime numbers. Prove that the $19^{th}$ term of the progression is the $18^{th}$ power of some positive integer. [i]($3$ points)[/i]

2006 Stanford Mathematics Tournament, 5

A geometric series is one where the ratio between each two consecutive terms is constant (ex. 3,6,12,24,...). The fifth term of a geometric series is 5!, and the sixth term is 6!. What is the fourth term?

1975 AMC 12/AHSME, 16

If the first term of an infinite geometric series is a positive integer, the common ratio is the reciprocal of a positive integer, and the sum of the series is 3, then the sum of the first two terms of the series is $ \textbf{(A)}\ 1/3 \qquad \textbf{(B)}\ 2/3 \qquad \textbf{(C)}\ 8/3 \qquad \textbf{(D)}\ 2 \qquad \textbf{(E)}\ 9/2$

Today's calculation of integrals, 851

Let $T$ be a period of a function $f(x)=|\cos x|\sin x\ (-\infty,\ \infty).$ Find $\lim_{n\to\infty} \int_0^{nT} e^{-x}f(x)\ dx.$

2004 Purple Comet Problems, 8

The number $2.5081081081081\ldots$ can be written as $\frac{m}{n}$ where $m$ and $n$ are natural numbers with no common factors. Find $m + n$.

2011 Pre-Preparation Course Examination, 2

by using the formula $\pi cot(\pi z)=\frac{1}{z}+\sum_{n=1}^{\infty}\frac{2z}{z^2-n^2}$ calculate values of $\zeta(2k)$ on terms of bernoli numbers and powers of $\pi$.

2014 Harvard-MIT Mathematics Tournament, 31

Compute \[\sum_{k=1}^{1007}\left(\cos\left(\dfrac{\pi k}{1007}\right)\right)^{2014}.\]

2012 Kyoto University Entry Examination, 6

Cast a dice $n$ times. Denote by $X_1,\ X_2,\ \cdots ,\ X_n$ the numbers shown on each dice. Define $Y_1,\ Y_2,\ \cdots,\ Y_n$ by \[Y_1=X_1,\ Y_k=X_k+\frac{1}{Y_{k-1}}\ (k=2,\ \cdots,\ n)\] Find the probability $p_n$ such that $\frac{1+\sqrt{3}}{2}\leq Y_n\leq 1+\sqrt{3}.$ 35 points

2008 National Olympiad First Round, 24

How many of the numbers \[ a_1\cdot 5^1+a_2\cdot 5^2+a_3\cdot 5^3+a_4\cdot 5^4+a_5\cdot 5^5+a_6\cdot 5^6 \] are negative if $a_1,a_2,a_3,a_4,a_5,a_6 \in \{-1,0,1 \}$? $ \textbf{(A)}\ 121 \qquad\textbf{(B)}\ 224 \qquad\textbf{(C)}\ 275 \qquad\textbf{(D)}\ 364 \qquad\textbf{(E)}\ 375 $

1994 Poland - First Round, 12

The sequence $(x_n)$ is given by $x_1=\frac{1}{2},$ $x_n=\frac{2n-3}{2n} \cdot x_{n-1}$ for $n=2,3,... .$ Prove that for all natural numbers $n \geq 1$ the following inequality holds $x_1+x_2+...+x_n < 1$.

1998 National High School Mathematics League, 3

For geometric series $(a_n)$ with all items real, if $S_{10}=10,S_{30}=70$, then $S_{40}=$ $\text{(A)}150\qquad\text{(B)}-200\qquad\text{(C)}150\text{ or }-200\qquad\text{(D)}-50\text{ or }400$ Note: $S_n=\sum_{i=1}^{n}a_i$.

2012 USAMTS Problems, 2

Palmer and James work at a dice factory, placing dots on dice. Palmer builds his dice correctly, placing the dots so that $1$, $2$, $3$, $4$, $5$, and $6$ dots are on separate faces. In a fit of mischief, James places his $21$ dots on a die in a peculiar order, putting some nonnegative integer number of dots on each face, but not necessarily in the correct con figuration. Regardless of the confi guration of dots, both dice are unweighted and have equal probability of showing each face after being rolled. Then Palmer and James play a game. Palmer rolls one of his normal dice and James rolls his peculiar die. If they tie, they roll again. Otherwise the person with the larger roll is the winner. What is the maximum probability that James wins? Give one example of a peculiar die that attains this maximum probability.

1994 AIME Problems, 4

Find the positive integer $n$ for which \[ \lfloor \log_2{1}\rfloor+\lfloor\log_2{2}\rfloor+\lfloor\log_2{3}\rfloor+\cdots+\lfloor\log_2{n}\rfloor=1994. \] (For real $x$, $\lfloor x\rfloor$ is the greatest integer $\le x.$)

2016 AIME Problems, 1

For $-1 < r < 1$, let $S(r)$ denote the sum of the geometric series \[12 + 12r + 12r^2 + 12r^3 + \ldots.\] Let $a$ between $-1$ and $1$ satisfy $S(a)S(-a)=2016$. Find $S(a) + S(-a)$.

2002 AIME Problems, 11

Two distinct, real, infinite geometric series each have a sum of $1$ and have the same second term. The third term of one of the series is $1/8,$ and the second term of both series can be written in the form $\frac{\sqrt{m}-n}{p},$ where $m,$ $n,$ and $p$ are positive integers and $m$ is not divisible by the square of any prime. Find $100m+10n+p.$

2009 AIME Problems, 8

Let $ S \equal{} \{2^0,2^1,2^2,\ldots,2^{10}\}$. Consider all possible positive differences of pairs of elements of $ S$. Let $ N$ be the sum of all of these differences. Find the remainder when $ N$ is divided by $ 1000$.

1989 AIME Problems, 3

Suppose $n$ is a positive integer and $d$ is a single digit in base 10. Find $n$ if \[ \frac{n}{810}=0.d25d25d25\ldots \]

1996 USAMO, 1

Prove that the average of the numbers $n \sin n^{\circ} \; (n = 2,4,6,\ldots,180)$ is $\cot 1^{\circ}$.

2017 CHMMC (Fall), 4

Jordan has an infinite geometric series of positive reals whose sum is equal to $2\sqrt2 + 2$. It turns out that if Jordan squares each term of his geometric series and adds up the resulting numbers, he get a sum equal to $4$. If Jordan decides to take the fourth power of each term of his original geometric series and add up the resulting numbers, what sum will he get?

2016 AMC 12/AHSME, 14

The sum of an infinite geometric series is a positive number $S$, and the second term in the series is $1$. What is the smallest possible value of $S?$ $\textbf{(A)}\ \frac{1+\sqrt{5}}{2} \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ \sqrt{5} \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ 4$

2008 Harvard-MIT Mathematics Tournament, 7

Compute $ \sum_{n \equal{} 1}^\infty\sum_{k \equal{} 1}^{n \minus{} 1}\frac {k}{2^{n \plus{} k}}$.

2006 Stanford Mathematics Tournament, 6

The expression $16^n+4^n+1$ is equiavalent to the expression $(2^{p(n)}-1)/(2^{q(n)}-1)$ for all positive integers $n>1$ where $p(n)$ and $q(n)$ are functions and $\tfrac{p(n)}{q(n)}$ is constant. Find $p(2006)-q(2006)$.

2011 USAMTS Problems, 2

Let $x$ be a complex number such that $x^{2011}=1$ and $x\neq 1$. Compute the sum \[\dfrac{x^2}{x-1}+\dfrac{x^4}{x^2-1}+\dfrac{x^6}{x^3-1}+\cdots+\dfrac{x^{4020}}{x^{2010}-1}.\]