Found problems: 1581
2011 Canadian Students Math Olympiad, 4
Circles $\Gamma_1$ and $\Gamma_2$ have centers $O_1$ and $O_2$ and intersect at $P$ and $Q$. A line through $P$ intersects $\Gamma_1$ and $\Gamma_2$ at $A$ and $B$, respectively, such that $AB$ is not perpendicular to $PQ$. Let $X$ be the point on $PQ$ such that $XA=XB$ and let $Y$ be the point within $AO_1 O_2 B$ such that $AYO_1$ and $BYO_2$ are similar. Prove that $2\angle{O_1 AY}=\angle{AXB}$.
[i]Author: Matthew Brennan[/i]
1970 IMO Longlists, 40
Let ABC be a triangle with angles $\alpha, \beta, \gamma$ commensurable with $\pi$. Starting from a point $P$ interior to the triangle, a ball reflects on the sides of $ABC$, respecting the law of reflection that the angle of incidence is equal to the angle of reflection. Prove that, supposing that the ball never reaches any of the vertices $A,B,C$, the set of all directions in which the ball will move through time is finite. In other words, its path from the moment $0$ to infinity consists of segments parallel to a finite set of lines.
2013 Canada National Olympiad, 5
Let $O$ denote the circumcentre of an acute-angled triangle $ABC$. Let point $P$ on side $AB$ be such that $\angle BOP = \angle ABC$, and let point $Q$ on side $AC$ be such that $\angle COQ = \angle ACB$. Prove that the reflection of $BC$ in the line $PQ$ is tangent to the circumcircle of triangle $APQ$.
2006 AIME Problems, 8
Hexagon $ABCDEF$ is divided into four rhombuses, $\mathcal{P, Q, R, S,}$ and $\mathcal{T,}$ as shown. Rhombuses $\mathcal{P, Q, R,}$ and $\mathcal{S}$ are congruent, and each has area $\sqrt{2006}$. Let $K$ be the area of rhombus $\mathcal{T}$. Given that $K$ is a positive integer, find the number of possible values for $K$.
[asy]
size(150);defaultpen(linewidth(0.7)+fontsize(10));
draw(rotate(45)*polygon(4));
pair F=(1+sqrt(2))*dir(180), C=(1+sqrt(2))*dir(0), A=F+sqrt(2)*dir(45), E=F+sqrt(2)*dir(-45), B=C+sqrt(2)*dir(180-45), D=C+sqrt(2)*dir(45-180);
draw(F--(-1,0)^^C--(1,0)^^A--B--C--D--E--F--cycle);
pair point=origin;
label("$A$", A, dir(point--A));
label("$B$", B, dir(point--B));
label("$C$", C, dir(point--C));
label("$D$", D, dir(point--D));
label("$E$", E, dir(point--E));
label("$F$", F, dir(point--F));
label("$\mathcal{P}$", intersectionpoint( A--(-1,0), F--(0,1) ));
label("$\mathcal{S}$", intersectionpoint( E--(-1,0), F--(0,-1) ));
label("$\mathcal{R}$", intersectionpoint( D--(1,0), C--(0,-1) ));
label("$\mathcal{Q}$", intersectionpoint( B--(1,0), C--(0,1) ));
label("$\mathcal{T}$", point);
dot(A^^B^^C^^D^^E^^F);[/asy]
MathLinks Contest 7th, 4.2
Find the number of finite sequences $ \{a_1,a_2,\ldots,a_{2n\plus{}1}\}$, formed with nonnegative integers, for which $ a_1\equal{}a_{2n\plus{}1}\equal{}0$ and $ |a_k \minus{}a_{k\plus{}1}|\equal{}1$, for all $ k\in\{1,2,\ldots,2n\}$.
1995 Poland - First Round, 8
The ray of light starts from the center of a square and reflects from its sides with the principle that the angle of reflection is equal to the angle of incidence. After some time the ray returns to the center of the square. The ray never reached the vertex and has never returned to the center of the square before. Prove that the ray reflected from the sides of the square an odd number of times.
2010 Iran MO (3rd Round), 4
in a triangle $ABC$, $I$ is the incenter. $BI$ and $CI$ cut the circumcircle of $ABC$ at $E$ and $F$ respectively. $M$ is the midpoint of $EF$. $C$ is a circle with diameter $EF$. $IM$ cuts $C$ at two points $L$ and $K$ and the arc $BC$ of circumcircle of $ABC$ (not containing $A$) at $D$. prove that $\frac{DL}{IL}=\frac{DK}{IK}$.(25 points)
2014 Online Math Open Problems, 19
In triangle $ABC$, $AB=3$, $AC=5$, and $BC=7$. Let $E$ be the reflection of $A$ over $\overline{BC}$, and let line $BE$ meet the circumcircle of $ABC$ again at $D$. Let $I$ be the incenter of $\triangle ABD$. Given that $\cos ^2 \angle AEI = \frac{m}{n},$ where $m$ and $n$ are relatively prime positive integers, determine $m+n$.
[i]Proposed by Ray Li[/i]
1966 AMC 12/AHSME, 34
Let $r$ be the speed in miles per hour at which a wheel, $11$ feet in circumference, travels. If the time for a complete rotation of the wheel is shortened by $\tfrac{1}{4}$ of a second, the speed $r$ is increased by $5$ miles per hour. The $r$ is:
$\text{(A)}\ 9\qquad
\text{(B)}\ 10\qquad
\text{(C)}\ 10\tfrac{1}{2}\qquad
\text{(D)}\ 11\qquad
\text{(E)}\ 12$
1998 All-Russian Olympiad, 8
Each square of a $(2^n-1) \times (2^n-1)$ board contains either $1$ or $-1$. Such an arrangement is called [i]successful[/i] if each number is the product of its neighbors. Find the number of successful arrangements.
2013 China Girls Math Olympiad, 7
As shown in the figure, $\odot O_1$ and $\odot O_2$ touches each other externally at a point $T$, quadrilateral $ABCD$ is inscribed in $\odot O_1$, and the lines $DA$, $CB$ are tangent to $\odot O_2$ at points $E$ and $F$ respectively. Line $BN$ bisects $\angle ABF$ and meets segment $EF$ at $N$. Line $FT$ meets the arc $\widehat{AT}$ (not passing through the point $B$) at another point $M$ different from $A$. Prove that $M$ is the circumcenter of $\triangle BCN$.
2010 Indonesia TST, 2
Circles $ \Gamma_1$ and $ \Gamma_2$ are internally tangent to circle $ \Gamma$ at $ P$ and $ Q$, respectively. Let $ P_1$ and $ Q_1$ are on $ \Gamma_1$ and $ \Gamma_2$ respectively such that $ P_1Q_1$ is the common tangent of $ P_1$ and $ Q_1$. Assume that $ \Gamma_1$ and $ \Gamma_2$ intersect at $ R$ and $ R_1$. Define $ O_1,O_2,O_3$ as the intersection of $ PQ$ and $ P_1Q_1$, the intersection of $ PR$ and $ P_1R_1$, and the intersection $ QR$ and $ Q_1R_1$. Prove that the points $ O_1,O_2,O_3$ are collinear.
[i]Rudi Adha Prihandoko, Bandung[/i]
2009 China Team Selection Test, 1
Given that circle $ \omega$ is tangent internally to circle $ \Gamma$ at $ S.$ $ \omega$ touches the chord $ AB$ of $ \Gamma$ at $ T$. Let $ O$ be the center of $ \omega.$ Point $ P$ lies on the line $ AO.$ Show that $ PB\perp AB$ if and only if $ PS\perp TS.$
1998 Flanders Math Olympiad, 3
a magical $3\times3$ square is a $3\times3$ matrix containing all number from 1 to 9, and of which the sum of every row, every column, every diagonal, are all equal.
Determine all magical $3\times3$ square
2006 Iran MO (3rd Round), 4
$f: \mathbb R^{n}\longrightarrow\mathbb R^{n}$ is a bijective map, that Image of every $n-1$-dimensional affine space is a $n-1$-dimensional affine space.
1) Prove that Image of every line is a line.
2) Prove that $f$ is an affine map. (i.e. $f=goh$ that $g$ is a translation and $h$ is a linear map.)
2007 Baltic Way, 7
A [i]squiggle[/i] is composed of six equilateral triangles with side length $1$ as shown in the figure below. Determine all possible integers $n$ such that an equilateral triangle with side length $n$ can be fully covered with [i]squiggle[/i]s (rotations and reflections of [i]squiggle[/i]s are allowed, overlappings are not).
[asy]
import graph; size(100); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black;
draw((0,0)--(0.5,1),linewidth(2pt)); draw((0.5,1)--(1,0),linewidth(2pt)); draw((0,0)--(3,0),linewidth(2pt)); draw((1.5,1)--(2,0),linewidth(2pt)); draw((2,0)--(2.5,1),linewidth(2pt)); draw((0.5,1)--(2.5,1),linewidth(2pt)); draw((1,0)--(2,2),linewidth(2pt)); draw((2,2)--(3,0),linewidth(2pt));
dot((0,0),ds); dot((1,0),ds); dot((0.5,1),ds); dot((2,0),ds); dot((1.5,1),ds); dot((3,0),ds); dot((2.5,1),ds); dot((2,2),ds); clip((-4.28,-10.96)--(-4.28,6.28)--(16.2,6.28)--(16.2,-10.96)--cycle);[/asy]
2014 Czech-Polish-Slovak Match, 6
Let $n \ge 6$ be an integer and $F$ be the system of the $3$-element subsets of the set $\{1, 2,...,n \}$ satisfying the following condition:
for every $1 \le i < j \le n$ there is at least $ \lfloor \frac{1}{3} n \rfloor -1$ subsets $A\in F$ such that $i, j \in A$.
Prove that for some integer $m \ge 1$ exist the mutually disjoint subsets $A_1, A_2 , ... , A_m \in F $ also, that $|A_1\cup A_2 \cup ... \cup A_m |\ge n-5 $
(Poland)
PS. just in case my translation does not make sense,
I leave the original in Slovak, in case someone understands something else
1997 Romania Team Selection Test, 4
Let $ABC$ be a triangle, $D$ be a point on side $BC$, and let $\mathcal{O}$ be the circumcircle of triangle $ABC$. Show that the circles tangent to $\mathcal{O},AD,BD$ and to $\mathcal{O},AD,DC$ are tangent to each other if and only if $\angle BAD=\angle CAD$.
[i]Dan Branzei[/i]
2001 India National Olympiad, 1
Let $ABC$ be a triangle in which no angle is $90^{\circ}$. For any point $P$ in the plane of the triangle, let $A_1, B_1, C_1$ denote the reflections of $P$ in the sides $BC,CA,AB$ respectively. Prove that
(i) If $P$ is the incenter or an excentre of $ABC$, then $P$ is the circumenter of $A_1B_1C_1$;
(ii) If $P$ is the circumcentre of $ABC$, then $P$ is the orthocentre of $A_1B_1C_1$;
(iii) If $P$ is the orthocentre of $ABC$, then $P$ is either the incentre or an excentre of $A_1B_1C_1$.
2024 Turkey EGMO TST, 6
Let $\omega_1$ and $\omega_2$ be two different circles that intersect at two different points, $X$ and $Y$. Let lines $l_1$ and $l_2$ be common tangent lines of these circles such that $l_1$ is tangent $\omega_1$ at $A$ and $\omega_2$ at $C$ and $l_2$ is tangent $\omega_1$ at $B$ and $\omega_2$ at $D$. Let $Z$ be the reflection of $Y$ respect to $l_1$ and let $BC$ and $\omega_1$ meet at $K$ for the second time. Let $AD$ and $\omega_2$ meet at $L$ for the second time. Prove that the line tangent to $\omega_1$ and passes through $K$ and the line tangent to $\omega_2$ and passes through $L$ meet on the line $XZ$.
2021 Iran MO (3rd Round), 2
Given an acute triangle $ABC$, let $AD$ be an altitude and $H$ the orthocenter. Let $E$ denote the reflection of $H$ with respect to $A$. Point $X$ is chosen on the circumcircle of triangle $BDE$ such that $AC\| DX$ and point $Y$ is chosen on the circumcircle of triangle $CDE$ such that $DY\| AB$. Prove that the circumcircle of triangle $AXY$ is tangent to that of $ABC$.
2008 Federal Competition For Advanced Students, Part 2, 3
We are given a square $ ABCD$. Let $ P$ be a point not equal to a corner of the square or to its center $ M$. For any such $ P$, we let $ E$ denote the common point of the lines $ PD$ and $ AC$, if such a point exists. Furthermore, we let $ F$ denote the common point of the lines $ PC$ and $ BD$, if such a point exists. All such points $ P$, for which $ E$ and $ F$ exist are called acceptable points. Determine the set of all acceptable points, for which the line $ EF$ is parallel to $ AD$.
2003 ITAMO, 3
Let a semicircle is given with diameter $AB$ and centre $O$ and let $C$ be a arbitrary point on the segment $OB$. Point $D$ on the semicircle is such that $CD$ is perpendicular to $AB$. A circle with centre $P$ is tangent to the arc $BD$ at $F$ and to the segment $CD$ and $AB$ at $E$ and $G$ respectively. Prove that the triangle $ADG$ is isosceles.
2011 China Western Mathematical Olympiad, 4
In a circle $\Gamma_{1}$, centered at $O$, $AB$ and $CD$ are two unequal in length chords intersecting at $E$ inside $\Gamma_{1}$. A circle $\Gamma_{2}$, centered at $I$ is tangent to $\Gamma_{1}$ internally at $F$, and also tangent to $AB$ at $G$ and $CD$ at $H$. A line $l$ through $O$ intersects $AB$ and $CD$ at $P$ and $Q$ respectively such that $EP = EQ$. The line $EF$ intersects $l$ at $M$. Prove that the line through $M$ parallel to $AB$ is tangent to $\Gamma_{1}$
2023 South East Mathematical Olympiad, 8
Let $p(x)$ be an $n$-degree $(n \ge 2)$ polynomial with integer coefficients. If there are infinitely many positive integers $m$, such that $p(m)$ at most $n -1$ different prime factors $f$, prove that $p(x)$ has at most $n-1$ different rational roots .
[color=#f00]a help in translation is welcome[/color]