This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6

1975 Bulgaria National Olympiad, Problem 4

In the plane are given a circle $k$ with radii $R$ and the points $A_1,A_2,\ldots,A_n$, lying on $k$ or outside $k$. Prove that there exist infinitely many points $X$ from the given circumference for which $$\sum_{i=1}^n A_iX^2\ge2nR^2.$$ Does there exist a pair of points on different sides of some diameter, $X$ and $Y$ from $k$, such that $$\sum_{i=1}^n A_iX^2\ge2nR^2\text{ and }\sum_{i=1}^n A_iY^2\ge2nR^2?$$ [i]H. Lesov[/i]

1969 Czech and Slovak Olympiad III A, 2

Five different points $O,A,B,C,D$ are given in plane such that \[OA\le OB\le OC\le OD.\] Show that for area $P$ of any convex quadrilateral with vertices $A,B,C,D$ (not necessarily in this order) the inequality \[P\le \frac12(OA+OD)(OB+OC)\] holds and determine when equality occurs.

1974 Bulgaria National Olympiad, Problem 6

In triangle pyramid $MABC$ at least two of the plane angles next to the edge $M$ are not equal to each other. Prove that if the bisectors of these angles form the same angle with the angle bisector of the third plane angle, the following inequality is true $$8a_1b_1c_1\le a^2a_1+b^2b_1+c^2c_1$$ where $a,b,c$ are sides of triangle $ABC$ and $a_1,b_1,c_1$ are edges crossed respectively with $a,b,c$. [i]V. Petkov[/i]

2019 Polish Junior MO Finals, 4.

The point $D$ lies on the side $AB$ of the triangle $ABC$. Assume that there exists such a point $E$ on the side $CD$, that $$ \sphericalangle EAD = \sphericalangle AED \quad \text{and} \quad \sphericalangle ECB = \sphericalangle CEB. $$ Show that $AC + BC > AB + CE$.

1972 Bulgaria National Olympiad, Problem 6

It is given a tetrahedron $ABCD$ for which two points of opposite edges are mutually perpendicular. Prove that: (a) the four altitudes of $ABCD$ intersects at a common point $H$; (b) $AH+BH+CH+DH<p+2R$, where $p$ is the sum of the lengths of all edges of $ABCD$ and $R$ is the radii of the sphere circumscribed around $ABCD$. [i]H. Lesov[/i]

1974 Czech and Slovak Olympiad III A, 5

Let $ABCDEF$ be a cyclic hexagon such that \[AB=BC,\quad CD=DE,\quad EF=FA.\] Show that \[[ACE]\le[BDF]\] and determine when the equality holds. ($[XYZ]$ denotes the area of the triangle $XYZ.$)