This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1988 Tournament Of Towns, (202) 6

$M$ is an interior point of a rectangle $ABCD$ and $S$ is its area. Prove that $S \le AM \cdot CM + BM \cdot DM$. (I.J . Goldsheyd)

2018 HMNT, 8

Equilateral triangle $ABC$ has circumcircle $\Omega$. Points $D$ and $E$ are chosen on minor arcs $AB$ and $AC$ of $\Omega$ respectively such that $BC=DE$. Given that triangle $ABE$ has area $3$ and triangle $ACD$ has area $4$, find the area of triangle $ABC$.

2023 ITAMO, 4

Tags: geometry
Fix circle with center $O$, diameter $AB$ and a point $C$ on it, different from $A, B$. Let a point $D$, different from $A, B$, vary on the arc $AB$ not containing $C$. Let $E$ lie on $CD$ such that $BE \perp CD$. Prove that $CE \cdot ED$ is maximal exactly when $BOED$ is cyclic.

2013 Bosnia And Herzegovina - Regional Olympiad, 3

Tags: geometry
Convex quadrilateral is divided by diagonals into four triangles with congruent inscribed circles. Prove that this quadrilateral is rhombus.

2023 Brazil Team Selection Test, 3

Tags: geometry
Let $ABCD$ be a parallelogram. Let $W, X, Y,$ and $Z$ be points on sides $AB, BC, CD,$ and $DA$, respectively, such that the incenters of triangles $AWZ, BXW, CYX,$ and $DZY$ form a parallelogram. Prove that $WXYZ$ is a parallelogram.

2009 Stanford Mathematics Tournament, 1

Tags: geometry
The sum of all of the interior angles of seven polygons is $180\times17$. Find the total number of sides of the polygons.

2000 USA Team Selection Test, 2

Let $ ABCD$ be a cyclic quadrilateral and let $ E$ and $ F$ be the feet of perpendiculars from the intersection of diagonals $ AC$ and $ BD$ to $ AB$ and $ CD$, respectively. Prove that $ EF$ is perpendicular to the line through the midpoints of $ AD$ and $ BC$.

2021 BMT, 25

Tags: geometry
Let $\vartriangle BMT$ be a triangle with $BT = 1$ and height $1$. Let $O_0$ be the centroid of $\vartriangle BMT$, and let $\overline{BO_0}$ and $\overline{TO_0}$ intersect $\overline{MT}$ and $\overline{BM}$ at $B_1$ and $T_1$, respectively. Similarly, let $O_1$ be the centroid of $\vartriangle B_1MT_1$, and in the same way, denote the centroid of $\vartriangle B_nMT_n$ by $O_n$, the intersection of $\overline{BO_n}$ with $\overline{MT}$ by $B_{n+1}$, and the intersection of $\overline{TO_n}$ with $\overline{BM}$ by $T_{n+1}$. Compute the area of quadrilateral $MBO_{2021}T$.

Novosibirsk Oral Geo Oly IX, 2019.1

The circle is inscribed in a triangle, inscribed in a semicircle. Find the marked angle $a$. [img]https://cdn.artofproblemsolving.com/attachments/8/e/334c8662377155086e9211da3589145f460b52.png[/img]

2008 Germany Team Selection Test, 1

Tags: geometry , ratio
Let $ ABC$ be an acute triangle, and $ M_a$, $ M_b$, $ M_c$ be the midpoints of the sides $ a$, $ b$, $ c$. The perpendicular bisectors of $ a$, $ b$, $ c$ (passing through $ M_a$, $ M_b$, $ M_c$) intersect the boundary of the triangle again in points $ T_a$, $ T_b$, $ T_c$. Show that if the set of points $ \left\{A,B,C\right\}$ can be mapped to the set $ \left\{T_a, T_b, T_c\right\}$ via a similitude transformation, then two feet of the altitudes of triangle $ ABC$ divide the respective triangle sides in the same ratio. (Here, "ratio" means the length of the shorter (or equal) part divided by the length of the longer (or equal) part.) Does the converse statement hold?

2020 IMEO, Problem 6

Let $O$, $I$, and $\omega$ be the circumcenter, the incenter, and the incircle of nonequilateral $\triangle ABC$. Let $\omega_A$ be the unique circle tangent to $AB$ and $AC$, such that the common chord of $\omega_A$ and $\omega$ passes through the center of $\omega_A$ . Let $O_A$ be the center of $\omega_A$. Define $\omega_B, O_B, \omega_C, O_C$ similarly. If $\omega$ touches $BC$, $CA$, $AB$ at $D$, $E$, $F$ respectively, prove that the perpendiculars from $D$, $E$, $F$ to $O_BO_C , O_CO_A , O_AO_B$ are concurrent on the line $OI$. [i]Pitchayut Saengrungkongka[/i]

Mid-Michigan MO, Grades 5-6, 2015

[b]p1.[/b] To every face of a given cube a new cube of the same size is glued. The resulting solid has how many faces? [b]p2.[/b] A father and his son returned from a fishing trip. To make their catches equal the father gave to his son some of his fish. If, instead, the son had given his father the same number of fish, then father would have had twice as many fish as his son. What percent more is the father's catch more than his son's? [b]p3.[/b] A radio transmitter has $4$ buttons. Each button controls its own switch: if the switch is OFF the button turns it ON and vice versa. The initial state of switches in unknown. The transmitter sends a signal if at least $3$ switches are ON. What is the minimal number of times you have to push the button to guarantee the signal is sent? [b]p4.[/b] $19$ matches are placed on a table to show the incorrect equation: $XXX + XIV = XV$. Move exactly one match to change this into a correct equation. [b]p5.[/b] Cut the grid shown into two parts of equal area by cutting along the lines of the grid. [img]https://cdn.artofproblemsolving.com/attachments/c/1/7f2f284acf3709c2f6b1bea08835d2fb409c44.png[/img] [b]p6.[/b] A family of funny dwarfs consists of a dad, a mom, and a child. Their names are: $A$, $R$, and $C$ (not in order). During lunch, $C$ made the statements: “$R$ and $A$ have different genders” and “$R$ and $A$ are my parents”, and $A$ made the statements “I am $C$'s dad” and “I am $R$'s daughter.” In fact, each dwarf told truth once and told a lie once. What is the name of the dad, what is the name of the child, and is the child a son or a daughter? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2021 Saudi Arabia IMO TST, 3

Let $ABC$ be a triangle with $AB < AC$, incenter $I$, and $A$ excenter $I_{A}$. The incircle meets $BC$ at $D$. Define $E = AD\cap BI_{A}$, $F = AD\cap CI_{A}$. Show that the circumcircle of $\triangle AID$ and $\triangle I_{A}EF$ are tangent to each other

2005 IMAR Test, 3

Tags: geometry
A convex polygon is given, no two of whose sides are parallel. For each side we consider the angle the side subtends at the vertex farthest from the side. Show that the sum of these angles equals 180 degrees.

2014 Romania National Olympiad, 4

Prove that three discs of radius $1$ cannot cover entirely a square surface of side $2$, but they can cover more than $99.75\%$ of it.

2013 Harvard-MIT Mathematics Tournament, 6

Tags: geometry
Let $ABCD$ be a quadrilateral such that $\angle ABC = \angle CDA = 90^o$, and $BC = 7$. Let $E$ and $F$ be on $BD$ such that $AE$ and $CF$ are perpendicular to BD. Suppose that $BE = 3$. Determine the product of the smallest and largest possible lengths of $DF$.

2018 Stanford Mathematics Tournament, 5

Tags: geometry
In $\vartriangle ABC$, $\angle ABC = 75^o$ and $\angle BAC$ is obtuse. Points $D$ and $E$ are on $AC$ and $BC$, respectively, such that $\frac{AB}{BC} = \frac{DE}{EC}$ and $\angle DEC = \angle EDC$. Compute $\angle DEC$ in degrees.

2023 Polish MO Finals, 2

Given an acute triangle $ABC$ with their incenter $I$. Point $X$ lies on $BC$ on the same side as $B$ wrt $AI$. Point $Y$ lies on the shorter arc $AB$ of the circumcircle $ABC$. It is given that $$\angle AIX = \angle XYA = 120^\circ.$$ Prove that $YI$ is the angle bisector of $XYA$.

2024 Euler Olympiad, Round 1, 8

Tags: euler , square , geometry
Let $P$ be a point inside a square $ABCD,$ such that $\angle BPC = 135^\circ $ and the area of triangle $ADP$ is twice as much as the area of triangle $PCD.$ Find $\frac {AP}{DP}.$ [i]Proposed by Andria Gvaramia, Georgia [/i]

2012 Czech-Polish-Slovak Junior Match, 4

A rhombus $ABCD$ is given with $\angle BAD = 60^o$ . Point $P$ lies inside the rhombus such that $BP = 1$, $DP = 2$, $CP = 3$. Determine the length of the segment $AP$.

2007 China Second Round Olympiad, 1

In an acute triangle $ABC$, $AB<AC$. $AD$ is the altitude dropped onto $BC$ and $P$ is a point on $AD$. Let $PE\perp AC$ at $E$, $PF\perp AB$ at $F$ and let $J,K$ be the circumcentres of triangles $BDF, CDE$ respectively. Prove that $J,K,E,F$ are concyclic if and only if $P$ is the orthocentre of triangle $ABC$.

2012 Puerto Rico Team Selection Test, 3

Tags: geometry
$ABC$ is a triangle that is inscribed in a circle. The angle bisectors of $A, B, C$ meet the circle at $D, E, F$, respectively. Show that $AD$ is perpendicular to $EF$.

Estonia Open Senior - geometry, 2006.1.3

Tags: geometry
Let $ ABC$ be an acute triangle and choose points $ A_1, B_1$ and $ C_1$ on sides $ BC, CA$ and $ AB$, respectively. Prove that if the quadrilaterals $ ABA_1B_1, BCB_1C_1$ and $ CAC_1A_1$ are cyclic then their circumcentres lie on the sides of $ ABC$.

2012 Sharygin Geometry Olympiad, 5

Do there exist a convex quadrilateral and a point $P$ inside it such that the sum of distances from $P$ to the vertices of the quadrilateral is greater than its perimeter? (A.Akopyan)

2002 USAMTS Problems, 1

Some unit cubes are stacked atop a flat 4 by 4 square. The figures show views of the stacks from two different sides. Find the maximum and minimum number of cubes that could be in the stacks. Also give top views of a maximum arrangement and a minimum arrangement with each stack marked with its height. [asy] string s = "1010101010111111"; defaultpen(linewidth(0.7)); for(int x=0;x<4;++x) { for(int y=0;y<4;++y) { if(hex(substr(s,4*(3-y)+x,1))==1) { draw((x,y)--(x,y+1)--(x+1,y+1)--(x+1,y)--cycle); } }} label("South View",(2,4),N); s = "0101110111111111"; for(int x=0;x<4;++x) { for(int y=0;y<4;++y) { if(hex(substr(s,4*(3-y)+x,1))==1) { x=x+5; draw((x,y)--(x,y+1)--(x+1,y+1)--(x+1,y)--cycle); x=x-5; } }} label("East View",(7,4),N);[/asy]