Found problems: 25757
1988 Vietnam National Olympiad, 3
Let $ a$, $ b$, $ c$ be three pairwise skew lines in space. Prove that they have a common perpendicular if and only if $ S_a \circ S_b \circ S_c$ is a reflection in a line, where $ S_x$ denotes the reflection in line $ x$.
2007 Portugal MO, 2
Let $[ABC]$ be a triangle and $X, Y$ and $Z$ points on the sides $[AB], [BC]$ and $[AC]$, respectively. Prove that circumcircles of triangles $AXZ, BXY$ and $CYZ$ intersect at a point.
2000 National Olympiad First Round, 19
Let $P$ be an arbitrary point inside $\triangle ABC$ with sides $3,7,8$. What is the probability that the distance of $P$ to at least one vertices of the triangle is less than $1$?
$ \textbf{(A)}\ \frac{\pi}{36}\sqrt 2
\qquad\textbf{(B)}\ \frac{\pi}{36}\sqrt 3
\qquad\textbf{(C)}\ \frac{\pi}{36}
\qquad\textbf{(D)}\ \frac12
\qquad\textbf{(E)}\ \frac 34
$
1998 IMO Shortlist, 4
Let $ M$ and $ N$ be two points inside triangle $ ABC$ such that
\[ \angle MAB \equal{} \angle NAC\quad \mbox{and}\quad \angle MBA \equal{} \angle NBC.
\]
Prove that
\[ \frac {AM \cdot AN}{AB \cdot AC} \plus{} \frac {BM \cdot BN}{BA \cdot BC} \plus{} \frac {CM \cdot CN}{CA \cdot CB} \equal{} 1.
\]
2008 Philippine MO, 3
Let $P$ be a point outside a circle $\Gamma$, and let the two tangent lines through $P$ touch $\Gamma$ at $A$ and $B$. Let $C$ be on the minor arc $AB$, and let ray $PC$ intersect $\Gamma$ again at $D$. Let $\ell$ be the line through $B$ and parallel to $PA$. $\ell$ intersects $AC$ and $AD$ at $E$ and $F$, respectively. Prove that $B$ is the midpoint of $EF$.
VMEO III 2006, 10.4
Given a convex polygon $ G$, show that there are three vertices of $ G$ which form a triangle so that it's perimeter is not less than 70% of the polygon's perimeter.
2014 NIMO Problems, 7
Let $\triangle ABC$ have $AB=6$, $BC=7$, and $CA=8$, and denote by $\omega$ its circumcircle. Let $N$ be a point on $\omega$ such that $AN$ is a diameter of $\omega$. Furthermore, let the tangent to $\omega$ at $A$ intersect $BC$ at $T$, and let the second intersection point of $NT$ with $\omega$ be $X$. The length of $\overline{AX}$ can be written in the form $\tfrac m{\sqrt n}$ for positive integers $m$ and $n$, where $n$ is not divisible by the square of any prime. Find $100m+n$.
[i]Proposed by David Altizio[/i]
1950 Moscow Mathematical Olympiad, 175
a) We are given $n$ circles $O_1, O_2, . . . , O_n$, passing through one point $O$. Let $A_1, . . . , A_n$ denote the second intersection points of $O_1$ with $O_2, O_2$ with $O_3$, etc., $O_n$ with $O_1$, respectively. We choose an arbitrary point $B_1$ on $O_1$ and draw a line segment through $A_1$ and $B_1$ to the second intersection with $O_2$ at $B_2$, then draw a line segment through $A_2$ and $B_2$ to the second intersection with $O_3$ at $B_3$, etc., until we get a point $B_n$ on $O_n$. We draw the line segment through $B_n$ and $A_n$ to the second intersection with $O_1$ at $B_{n+1}$. If $B_k$ and $A_k$ coincide for some $k$, we draw the tangent to $O_k$ through $A_k$ until this tangent intersects $O_{k+1}$ at $B_{k+1}$. Prove that $B_{n+1}$ coincides with $B_1$.
b) for $n=3$ the same problem.
2005 Estonia Team Selection Test, 6
Let $\Gamma$ be a circle and let $d$ be a line such that $\Gamma$ and $d$ have no common points. Further, let $AB$ be a diameter of the circle $\Gamma$; assume that this diameter $AB$ is perpendicular to the line $d$, and the point $B$ is nearer to the line $d$ than the point $A$. Let $C$ be an arbitrary point on the circle $\Gamma$, different from the points $A$ and $B$. Let $D$ be the point of intersection of the lines $AC$ and $d$. One of the two tangents from the point $D$ to the circle $\Gamma$ touches this circle $\Gamma$ at a point $E$; hereby, we assume that the points $B$ and $E$ lie in the same halfplane with respect to the line $AC$. Denote by $F$ the point of intersection of the lines $BE$ and $d$. Let the line $AF$ intersect the circle $\Gamma$ at a point $G$, different from $A$.
Prove that the reflection of the point $G$ in the line $AB$ lies on the line $CF$.
2023 Junior Balkan Mathematical Olympiad, 4
Let $ABC$ be an acute triangle with circumcenter $O$. Let $D$ be the foot of the altitude from $A$ to $BC$ and let $M$ be the midpoint of $OD$. The points $O_b$ and $O_c$ are the circumcenters of triangles $AOC$ and $AOB$, respectively. If $AO=AD$, prove that points $A$, $O_b$, $M$ and $O_c$ are concyclic.
[i]Marin Hristov and Bozhidar Dimitrov, Bulgaria[/i]
2023 Purple Comet Problems, 13
In convex quadrilateral $ABCD$, $\angle BAD = \angle BCD = 90^o$, and $BC = CD$. Let $E$ be the intersection of diagonals $\overline{AC}$ and $\overline{BD}$. Given that $\angle AED = 123^o$, find the degree measure of $\angle ABD$.
2023 Hong Kong Team Selection Test, Problem 3
A point $P$ lies inside an equilateral triangle $ABC$ such that $AP=15$ and $BP=8$. Find the maximum possible value of the sum of areas of triangles $ABP$ and $BCP$.
1996 All-Russian Olympiad, 1
Which are there more of among the natural numbers from 1 to 1000000, inclusive: numbers that can be represented as the sum of a perfect square and a (positive) perfect cube, or numbers that cannot be?
[i]A. Golovanov[/i]
1993 AIME Problems, 15
Let $\overline{CH}$ be an altitude of $\triangle ABC$. Let $R$ and $S$ be the points where the circles inscribed in the triangles $ACH$ and $BCH$ are tangent to $\overline{CH}$. If $AB = 1995$, $AC = 1994$, and $BC = 1993$, then $RS$ can be expressed as $m/n$, where $m$ and $n$ are relatively prime integers. Find $m + n$
2014 Purple Comet Problems, 11
Shenelle has some square tiles. Some of the tiles have side length $5\text{ cm}$ while the others have side length $3\text{ cm}$. The total area that can be covered by the tiles is exactly $2014\text{ cm}^2$. Find the least number of tiles that Shenelle can have.
2005 CHKMO, 3
Points $P$ and $Q$ are taken sides $AB$ and $AC$ of a triangle $ABC$ respectively such that $\hat{APC}=\hat{AQB}=45^{0}$. The line through $P$ perpendicular to $AB$ intersects $BQ$ at $S$, and the line through $Q$ perpendicular to $AC$ intersects $CP$ at $R$. Let $D$ be the foot of the altitude of triangle $ABC$ from $A$. Prove that $SR\parallel BC$ and $PS,AD,QR$ are concurrent.
2018 Iranian Geometry Olympiad, 1
As shown below, there is a $40\times30$ paper with a filled $10\times5$ rectangle inside of it. We want to cut out the filled rectangle from the paper using four straight cuts. Each straight cut is a straight line that divides the paper into two pieces, and we keep the piece containing the filled rectangle. The goal is to minimize the total length of the straight cuts. How to achieve this goal, and what is that minimized length? Show the correct cuts and write the final answer. There is no need to prove the answer.
[i]Proposed by Morteza Saghafian[/i]
V Soros Olympiad 1998 - 99 (Russia), 10.5
An isosceles triangle $ABC$ ($AB = BC$) is given on the plane. Find the locus of points $M$ of the plane such that $ABCM$ is a convex quadrilateral and $\angle MAC + \angle CMB = 90^o$.
2004 Iran MO (3rd Round), 2
$A$ is a compact convex set in plane. Prove that there exists a point $O \in A$, such that for every line $XX'$ passing through $O$, where $X$ and $X'$ are boundary points of $A$, then
\[ \frac12 \leq \frac {OX}{OX'} \leq 2.\]
2023 Spain Mathematical Olympiad, 2
Let $ABC$ be an acute scalene triangle with incenter $I$ and orthocenter $H$. Let $M$ be the midpoint of $AB$. On the line $AH$ we consider points $D$ and $E$, such that the line $MD$ is parallel to $CI$ and $ME$ is perpendicular to $CI$. Prove that $AE=DH$.
1987 USAMO, 4
Three circles $C_i$ are given in the plane: $C_1$ has diameter $AB$ of length $1$; $C_2$ is concentric and has diameter $k$ ($1 < k < 3$); $C_3$ has center $A$ and diameter $2k$. We regard $k$ as fixed. Now consider all straight line segments $XY$ which have one endpoint $X$ on $C_2$, one endpoint $Y$ on $C_3$, and contain the point $B$. For what ratio $XB/BY$ will the segment $XY$ have minimal length?
Durer Math Competition CD Finals - geometry, 2009.D3
What is the area of the letter $O$ made by Dürer? The two circles have a unit radius. Their centers, or the angle of a triangle formed by an intersection point of the circles is $30^o$.
[img]https://cdn.artofproblemsolving.com/attachments/b/c/fe052393871a600fc262bd60047433972ae1be.png[/img]
2011 Saudi Arabia BMO TST, 1
Prove that for any positive integer $n$ there is an equiangular hexagon whose sidelengths are $n + 1, n + 2 ,..., n + 6$ in some order.
2016 Denmark MO - Mohr Contest, 3
Prove that all quadrilaterals $ABCD$ where $\angle B = \angle D = 90^o$, $|AB| = |BC|$ and $|AD| + |DC| = 1$, have the same area.
[img]https://1.bp.blogspot.com/-55lHuAKYEtI/XzRzDdRGDPI/AAAAAAAAMUk/n8lYt3fzFaAB410PQI4nMEz7cSSrfHEgQCLcBGAsYHQ/s0/2016%2Bmohr%2Bp3.png[/img]
Durer Math Competition CD 1st Round - geometry, 2013.D3
The area of the triangle $ABC$ shown in the figure is $1$ unit. Points $D$ and $E$ lie on sides $AC$ and $BC$ respectively, and also are its ''one third'' points closer to $C$. Let $F$ be that $AE$ and $G$ are the midpoints of segment $BD$. What is the area of the marked quadrilateral $ABGF$?
[img]https://cdn.artofproblemsolving.com/attachments/4/e/305673f429c86bbc58a8d40272dd6c9a8f0ab2.png[/img]