This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 583

1999 Tuymaada Olympiad, 4

A right parallelepiped (i.e. a parallelepiped one of whose edges is perpendicular to a face) is given. Its vertices have integral coordinates, and no other points with integral coordinates lie on its faces or edges. Prove that the volume of this parallelepiped is a sum of three perfect squares. [i]Proposed by A. Golovanov[/i]

2009 Harvard-MIT Mathematics Tournament, 4

Suppose $a$, $b$ and $c$ are integers such that the greatest common divisor of $x^2+ax+b$ and $x^2+bx+c$ is $x+1$ (in the set of polynomials in $x$ with integer coefficients), and the least common multiple of $x^2+ax+b$ and $x^2+bx+c$ $x^3-4x^2+x+6$. Find $a+b+c$.

2006 Pre-Preparation Course Examination, 3

a) If $K$ is a finite extension of the field $F$ and $K=F(\alpha,\beta)$ show that $[K: F]\leq [F(\alpha): F][F(\beta): F]$ b) If $gcd([F(\alpha): F],[F(\beta): F])=1$ then does the above inequality always become equality? c) By giving an example show that if $gcd([F(\alpha): F],[F(\beta): F])\neq 1$ then equality might happen.

2005 Korea National Olympiad, 1

For two positive integers a and b, which are relatively prime, find all integer that can be the great common divisor of $a+b$ and $\frac{a^{2005}+b^{2005}}{a+b}$.

2003 Turkey MO (2nd round), 1

Suppose that $2^{2n+1}+ 2^{n}+1=x^{k}$, where $k\geq2$ and $n$ are positive integers. Find all possible values of $n$.

1998 South africa National Olympiad, 5

Prove that \[ \gcd{\left({n \choose 1},{n \choose 2},\dots,{n \choose {n - 1}}\right)} \] is a prime if $n$ is a power of a prime, and 1 otherwise.

2009 China Team Selection Test, 3

Let $ (a_{n})_{n\ge 1}$ be a sequence of positive integers satisfying $ (a_{m},a_{n}) = a_{(m,n)}$ (for all $ m,n\in N^ +$). Prove that for any $ n\in N^ + ,\prod_{d|n}{a_{d}^{\mu (\frac {n}{d})}}$ is an integer. where $ d|n$ denotes $ d$ take all positive divisors of $ n.$ Function $ \mu (n)$ is defined as follows: if $ n$ can be divided by square of certain prime number, then $ \mu (1) = 1;\mu (n) = 0$; if $ n$ can be expressed as product of $ k$ different prime numbers, then $ \mu (n) = ( - 1)^k.$

2003 Hungary-Israel Binational, 1

Two players play the following game. They alternately write divisors of $100!$ on the blackboard, not repeating any of the numbers written before. The player after whose move the greatest common divisor of the written numbers equals $1,$ loses the game. Which player has a winning strategy?

2012 Indonesia MO, 1

Show that for any positive integers $a$ and $b$, the number \[n=\mathrm{LCM}(a,b)+\mathrm{GCD}(a,b)-a-b\] is an even non-negative integer. [i]Proposer: Nanang Susyanto[/i]

2019 Balkan MO Shortlist, N2

Let $S \subset \{ 1, \dots, n \}$ be a nonempty set, where $n$ is a positive integer. We denote by $s$ the greatest common divisor of the elements of the set $S$. We assume that $s \not= 1$ and let $d$ be its smallest divisor greater than $1$. Let $T \subset \{ 1, \dots, n \}$ be a set such that $S \subset T$ and $|T| \ge 1 + \left[ \frac{n}{d} \right]$. Prove that the greatest common divisor of the elements in $T$ is $1$. ----------- [Second Version] Let $n(n \ge 1)$ be a positive integer and $U = \{ 1, \dots, n \}$. Let $S$ be a nonempty subset of $U$ and let $d (d \not= 1)$ be the smallest common divisor of all elements of the set $S$. Find the smallest positive integer $k$ such that for any subset $T$ of $U$, consisting of $k$ elements, with $S \subset T$, the greatest common divisor of all elements of $T$ is equal to $1$.

2006 China Team Selection Test, 3

Let $a_{i}$ and $b_{i}$ ($i=1,2, \cdots, n$) be rational numbers such that for any real number $x$ there is: \[x^{2}+x+4=\sum_{i=1}^{n}(a_{i}x+b)^{2}\] Find the least possible value of $n$.

2015 NIMO Problems, 8

For an integer $30 \le k \le 70$, let $M$ be the maximum possible value of \[ \frac{A}{\gcd(A,B)} \quad \text{where } A = \dbinom{100}{k} \text{ and } B = \dbinom{100}{k+3}. \] Find the remainder when $M$ is divided by $1000$. [i]Based on a proposal by Michael Tang[/i]

PEN H Problems, 26

Solve in integers the following equation \[n^{2002}=m(m+n)(m+2n)\cdots(m+2001n).\]

2014 Korea National Olympiad, 1

For $x, y$ positive integers, $x^2-4y+1$ is a multiple of $(x-2y)(1-2y)$. Prove that $|x-2y|$ is a square number.

2023 Bulgaria JBMO TST, 2

Determine the smallest positive integer $n\geq 2$ for which there exists a positive integer $m$ such that $mn$ divides $m^{2023} + n^{2023} + n$.

1988 All Soviet Union Mathematical Olympiad, 485

The sequence of integers an is given by $a_0 = 0, a_n = p(a_n-1)$, where $p(x)$ is a polynomial whose coefficients are all positive integers. Show that for any two positive integers $m, k$ with greatest common divisor $d$, the greatest common divisor of $a_m$ and $a_k$ is $a_d$.

2011 Turkey Team Selection Test, 3

Let $t(n)$ be the sum of the digits in the binary representation of a positive integer $n,$ and let $k \geq 2$ be an integer. [b]a.[/b] Show that there exists a sequence $(a_i)_{i=1}^{\infty}$ of integers such that $a_m \geq 3$ is an odd integer and $t(a_1a_2 \cdots a_m)=k$ for all $m \geq 1.$ [b]b.[/b] Show that there is an integer $N$ such that $t(3 \cdot 5 \cdots (2m+1))>k$ for all integers $m \geq N.$

2012 International Zhautykov Olympiad, 3

Find all integer solutions of the equation the equation $2x^2-y^{14}=1$.

2009 All-Russian Olympiad Regional Round, 11.7

$a$, $b$ and $c$ are positive integers with $\textrm{gcd}(a,b,c)=1$. Is it true that there exist a positive integer $n$ such that $a^k+b^k+c^k$ is not divisible by $2^n$ for all $k$?

2007 Romania Team Selection Test, 3

Let $a_{i}$, $i = 1,2, \dots ,n$, $n \geq 3$, be positive integers, having the greatest common divisor 1, such that \[a_{j}\textrm{ divide }\sum_{i = 1}^{n}a_{i}\] for all $j = 1,2, \dots ,n$. Prove that \[\prod_{i = 1}^{n}a_{i}\textrm{ divides }\Big{(}\sum_{i = 1}^{n}a_{i}\Big{)}^{n-2}.\]

2016 Peru IMO TST, 9

Let $\mathbb{Z}_{>0}$ denote the set of positive integers. For any positive integer $k$, a function $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ is called [i]$k$-good[/i] if $\gcd(f(m) + n, f(n) + m) \le k$ for all $m \neq n$. Find all $k$ such that there exists a $k$-good function. [i]Proposed by James Rickards, Canada[/i]

1963 All Russian Mathematical Olympiad, 030

Natural numbers $a$ and $b$ are relatively prime. Prove that the greatest common divisor of $(a+b)$ and $(a^2+b^2)$ is either $1$ or $2$.

2016 CCA Math Bonanza, I14

Compute \[\sum_{k=1}^{420} \gcd(k,420).\] [i]2016 CCA Math Bonanza Individual #14[/i]

1994 Tournament Of Towns, (422) 3

Find five positive integers such that the greatest common divisor of each pair is equal to the difference between them. (SI Tokarev)

2013 Switzerland - Final Round, 1

Find all triples $(a, b, c)$ of natural numbers such that the sets $$\{ gcd (a, b), gcd(b, c), gcd(c, a), lcm (a, b), lcm (b, c), lcm (c, a)\}$$ and $$\{2, 3, 5, 30, 60\}$$ are the same. Remark: For example, the sets $\{1, 2013\}$ and $\{1, 1, 2013\}$ are equal.