This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 250

2007 Nicolae Păun, 3

In the following exercise, $ C_G (e) $ denotes the centralizer of the element $ e $ in the group $ G. $ [b]a)[/b] Prove that $ \max_{\sigma\in S_n\setminus\{1\}} \left| C_{S_n} (\sigma ) \right| <\frac{n!}{2} , $ for any natural number $ n\ge 4. $ [b]b)[/b] Show that $ \lim_{n\to\infty} \left(\frac{1}{n!}\cdot\max_{\sigma\in S_n\setminus\{1\}} \left| C_{S_n} (\sigma ) \right|\right) =0. $ [i]Alexandru Cioba[/i]

2023 Miklós Schweitzer, 5

Let $G{}$ be an arbitrary finite group, and let $t_n(G)$ be the number of functions of the form \[f:G^n\to G,\quad f(x_1,x_2,\ldots,x_n)=a_0x_1a_1\cdots x_na_n\quad(a_0,\ldots,a_n\in G).\]Determine the limit of $t_n(G)^{1/n}$ as $n{}$ tends to infinity.

2022 District Olympiad, P2

Let $(G,\cdot)$ be a group and $H\neq G$ be a subgroup so that $x^2=y^2$ for all $x,y\in G\setminus H.$ Show that $(H,\cdot)$ is an Abelian group.

2012 Today's Calculation Of Integral, 826

Let $G$ be a hyper elementary abelian $p-$group and let $f : G \rightarrow G$ be a homomorphism. Then prove that $\ker f$ is isomorphic to $\mathrm{coker} f$.

2004 All-Russian Olympiad, 3

On a table there are 2004 boxes, and in each box a ball lies. I know that some the balls are white and that the number of white balls is even. In each case I may point to two arbitrary boxes and ask whether in the box contains at least a white ball lies. After which minimum number of questions I can indicate two boxes for sure, in which white balls lie?

2021 Alibaba Global Math Competition, 13

Let $M_n=\{(u,v) \in S^n \times S^n: u \cdot v=0\}$, where $n \ge 2$, and $u \cdot v$ is the Euclidean inner product of $u$ and $v$. Suppose that the topology of $M_n$ is induces from $S^n \times S^n$. (1) Prove that $M_n$ is a connected regular submanifold of $S^n \times S^n$. (2) $M_n$ is Lie Group if and only if $n=2$.

2012 Bogdan Stan, 4

Let be a group of order $ 2002 $ having the property that the application $ x\mapsto x^4 $ is and endomorphism of it. Show that this group is cyclic.

2017 District Olympiad, 2

Let be a group and two coprime natural numbers $ m,n. $ Show that if the applications $ G\ni x\mapsto x^{m+1},x^{n+1} $ are surjective endomorphisms, then the group is commutative.

2010 Iran MO (3rd Round), 5

suppose that $p$ is a prime number. find that smallest $n$ such that there exists a non-abelian group $G$ with $|G|=p^n$. SL is an acronym for Special Lesson. this year our special lesson was Groups and Symmetries. the exam time was 5 hours.

2002 Iran Team Selection Test, 12

We call a permutation $ \left(a_1, a_2, ..., a_n\right)$ of $ \left(1, 2, ..., n\right)$ [i]quadratic[/i] if there exists at least a perfect square among the numbers $ a_1$, $ a_1 \plus{} a_2$, $ ...$, $ a_1 \plus{} a_2 \plus{} ... \plus{} a_n$. Find all natural numbers $ n$ such that all permutations in $ S_n$ are quadratic. [i]Remark.[/i] $ S_{n}$ denotes the $ n$-th symmetric group, the group of permutations on $ n$ elements.

1973 IMO Shortlist, 17

$G$ is a set of non-constant functions $f$. Each $f$ is defined on the real line and has the form $f(x)=ax+b$ for some real $a,b$. If $f$ and $g$ are in $G$, then so is $fg$, where $fg$ is defined by $fg(x)=f(g(x))$. If $f$ is in $G$, then so is the inverse $f^{-1}$. If $f(x)=ax+b$, then $f^{-1}(x)= \frac{x-b}{a}$. Every $f$ in $G$ has a fixed point (in other words we can find $x_f$ such that $f(x_f)=x_f$. Prove that all the functions in $G$ have a common fixed point.

2004 Romania National Olympiad, 4

Let $\mathcal K$ be a field of characteristic $p$, $p \equiv 1 \left( \bmod 4 \right)$. (a) Prove that $-1$ is the square of an element from $\mathcal K.$ (b) Prove that any element $\neq 0$ from $\mathcal K$ can be written as the sum of three squares, each $\neq 0$, of elements from $\mathcal K$. (c) Can $0$ be written in the same way? [i]Marian Andronache[/i]

1975 Putnam, B1

Consider the additive group $\mathbb{Z}^{2}$. Let $H$ be the smallest subgroup containing $(3,8), (4,-1)$ and $(5,4)$. Let $H_{xy}$ be the smallest subgroup containing $(0,x)$ and $(1,y)$. Find some pair $(x,y)$ with $x>0$ such that $H=H_{xy}$.

1977 IMO Longlists, 34

Let $B$ be a set of $k$ sequences each having $n$ terms equal to $1$ or $-1$. The product of two such sequences $(a_1, a_2, \ldots , a_n)$ and $(b_1, b_2, \ldots , b_n)$ is defined as $(a_1b_1, a_2b_2, \ldots , a_nb_n)$. Prove that there exists a sequence $(c_1, c_2, \ldots , c_n)$ such that the intersection of $B$ and the set containing all sequences from $B$ multiplied by $(c_1, c_2, \ldots , c_n)$ contains at most $\frac{k^2}{2^n}$ sequences.

1972 Miklós Schweitzer, 4

Let $ G$ be a solvable torsion group in which every Abelian subgroup is finitely generated. Prove that $ G$ is finite. [i]J. Pelikan[/i]

2012 France Team Selection Test, 1

Let $n$ and $k$ be two positive integers. Consider a group of $k$ people such that, for each group of $n$ people, there is a $(n+1)$-th person that knows them all (if $A$ knows $B$ then $B$ knows $A$). 1) If $k=2n+1$, prove that there exists a person who knows all others. 2) If $k=2n+2$, give an example of such a group in which no-one knows all others.

2007 Nicolae Păun, 1

Consider a finite group $ G $ and the sequence of functions $ \left( A_n \right)_{n\ge 1} :G\longrightarrow \mathcal{P} (G) $ defined as $ A_n(g) = \left\{ x\in G|x^n=g \right\} , $ where $ \mathcal{P} (G) $ is the power of $ G. $ [b]a)[/b] Prove that if $ G $ is commutative, then for any natural numbers $ n, $ either $ A_n(g) =\emptyset , $ or $ \left| A_n(g) \right| =\left| A_n(1) \right| . $ [b]b)[/b] Provide an example of what $ G $ could be in the case that there exists an element $ g_0 $ of $ G $ and a natural number $ n_0 $ such that $ \left| A_{n_0}\left( g_0 \right) \right| >\left| A_{n_0}(1) \right| . $ [i]Sorin Rădulescu[/i] and [i]Ion Savu[/i]

2020 IMC, 7

Let $G$ be a group and $n \ge 2$ be an integer. Let $H_1, H_2$ be $2$ subgroups of $G$ that satisfy $$[G: H_1] = [G: H_2] = n \text{ and } [G: (H_1 \cap H_2)] = n(n-1).$$ Prove that $H_1, H_2$ are conjugate in $G.$ Official definitions: $[G:H]$ denotes the index of the subgroup of $H,$ i.e. the number of distinct left cosets $xH$ of $H$ in $G.$ The subgroups $H_1, H_2$ are conjugate if there exists $g \in G$ such that $g^{-1} H_1 g = H_2.$

2007 Romania National Olympiad, 4

Let $n\geq 3$ be an integer and $S_{n}$ the permutation group. $G$ is a subgroup of $S_{n}$, generated by $n-2$ transpositions. For all $k\in\{1,2,\ldots,n\}$, denote by $S(k)$ the set $\{\sigma(k) \ : \ \sigma\in G\}$. Show that for any $k$, $|S(k)|\leq n-1$.

PEN D Problems, 12

Suppose that $m>2$, and let $P$ be the product of the positive integers less than $m$ that are relatively prime to $m$. Show that $P \equiv -1 \pmod{m}$ if $m=4$, $p^n$, or $2p^{n}$, where $p$ is an odd prime, and $P \equiv 1 \pmod{m}$ otherwise.

2012 China Team Selection Test, 3

$n$ being a given integer, find all functions $f\colon \mathbb{Z} \to \mathbb{Z}$, such that for all integers $x,y$ we have $f\left( {x + y + f(y)} \right) = f(x) + ny$.

2010 AMC 12/AHSME, 25

Two quadrilaterals are considered the same if one can be obtained from the other by a rotation and a translation. How many different convex cyclic quadrilaterals are there with integer sides and perimeter equal to $ 32$? $ \textbf{(A)}\ 560 \qquad \textbf{(B)}\ 564 \qquad \textbf{(C)}\ 568 \qquad \textbf{(D)}\ 1498 \qquad \textbf{(E)}\ 2255$

2019 Teodor Topan, 4

Tags: group theory
Let $ S $ be a finite [url=https://en.wikipedia.org/wiki/Cancellation_property]cancellative semigroup.[/url] [b]a)[/b] Prove that $ S $ contains an idempotent element. [b]b)[/b] Prove that $ S $ is a group. [b]c)[/b] Disprove subpoint [b]b)[/b] in the case that $ S $ would not be finite. [i]Vlad Mihaly[/i]

1987 Greece National Olympiad, 1

a) Prove that every sub-group $(A,+)$ of group $(\mathbb{Z},+)$ is in the form $A=n \cdot \mathbb{Z}$ for some $n \in \mathbb{Z}$ where $n \cdot \mathbb{Z}=\{n \cdot x/x\in\mathbb{Z}\}$. b) Using problem (a) , prove that the greatest common divisor $d$ of non zero integers $a_1, a_2,... ,a_n$ is given by relation $d=\lambda_1a_1+\lambda_2 a_2+...\lambda_n a_n$ with $\lambda_i\in\mathbb{Z}, \,\, i=1,2,...,n$

1993 Hungary-Israel Binational, 3

In the questions below: $G$ is a finite group; $H \leq G$ a subgroup of $G; |G : H |$ the index of $H$ in $G; |X |$ the number of elements of $X \subseteq G; Z (G)$ the center of $G; G'$ the commutator subgroup of $G; N_{G}(H )$ the normalizer of $H$ in $G; C_{G}(H )$ the centralizer of $H$ in $G$; and $S_{n}$ the $n$-th symmetric group. Show that every element of $S_{n}$ is a product of $2$-cycles.