This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2008 Kazakhstan National Olympiad, 1

Find all integer solutions $ (a_1,a_2,\dots,a_{2008})$ of the following equation: $ (2008\minus{}a_1)^2\plus{}(a_1\minus{}a_2)^2\plus{}\dots\plus{}(a_{2007}\minus{}a_{2008})^2\plus{}a_{2008}^2\equal{}2008$

2010 Czech-Polish-Slovak Match, 2

Tags: inequalities
Let $x$, $y$, $z$ be positive real numbers satisfying $x+y+z\ge 6$. Find, with proof, the minimum value of \[ x^2+y^2+z^2+\frac{x}{y^2+z+1}+\frac{y}{z^2+x+1}+\frac{z}{x^2+y+1}. \]

Brazil L2 Finals (OBM) - geometry, 2003.5

Given a circle and a point $A$ inside the circle, but not at its center. Find points $B$, $C$, $D$ on the circle which maximise the area of the quadrilateral $ABCD$.

2017 Stars of Mathematics, 2

Tags: inequalities
Let $ x,y,z $ be three positive real numbers such that $ x^2+y^2+z^2+3=2(xy+yz+zx) . $ Show that $$ \sqrt{xy}+\sqrt{yz}+\sqrt{zx}\ge 3, $$ and determine in which circumstances equality happens. [i]Vlad Robu[/i]

2018 International Zhautykov Olympiad, 6

In a circle with a radius $R$ a convex hexagon is inscribed. The diagonals $AD$ and $BE$,$BE$ and $CF$,$CF$ and $AD$ of the hexagon intersect at the points $M$,$N$ and$K$, respectively. Let $r_1,r_2,r_3,r_4,r_5,r_6$ be the radii of circles inscribed in triangles $ ABM,BCN,CDK,DEM,EFN,AFK$ respectively. Prove that.$$r_1+r_2+r_3+r_4+r_5+r_6\leq R\sqrt{3}$$ .

1997 Turkey MO (2nd round), 2

Let $F$ be a point inside a convex pentagon $ABCDE$, and let $a_{1}$, $a_{2}$, $a_{3}$, $a_{4}$, $a_{5}$ denote the distances from $F$ to the lines $AB$, $BC$, $CD$, $DE$, $EA$, respectively. The points $F_{1}$, $F_{2}$, $F_{3}$, $F_{4}$, $F_{5}$ are chosen on the inner bisectors of the angles $A$, $B$, $C$, $D$, $E$ of the pentagon respectively, so that $AF_{1} = AF$ , $BF_{2} = BF$ , $CF_{3} = CF$ , $DF_{4} = DF$ and $EF_{5} = EF$ . If the distances from $F_{1}$, $F_{2}$, $F_{3}$, $F_{4}$, $F_{5}$ to the lines $EA$, $AB$, $BC$, $CD$, $DE$ are $b_{1}$, $b_{2}$, $b_{3}$, $b_{4}$, $b_{5}$, respectively. Prove that $a_{1} + a_{2} + a_{3} + a_{4} + a_{5} \leq b_{1} + b_{2} + b_{3} + b_{4} + b_{5}$

1983 IMO Longlists, 32

Let $a, b, c$ be positive real numbers and let $[x]$ denote the greatest integer that does not exceed the real number $x$. Suppose that $f$ is a function defined on the set of non-negative integers $n$ and taking real values such that $f(0) = 0$ and \[f(n) \leq an + f([bn]) + f([cn]), \qquad \text{ for all } n \geq 1.\] Prove that if $b + c < 1$, there is a real number $k$ such that \[f(n) \leq kn \qquad \text{ for all } n \qquad (1)\] while if $b + c = 1$, there is a real number $K$ such that $f(n) \leq K n \log_2 n$ for all $n \geq 2$. Show that if $b + c = 1$, there may not be a real number $k$ that satisfies $(1).$

2006 Thailand Mathematical Olympiad, 7

Let $x, y, z$ be reals summing to $1$ which minimizes $2x^2 + 3y^2 + 4z^2$. Find $x$.

2012 Romania National Olympiad, 4

[color=darkred]Find all differentiable functions $f\colon [0,\infty)\to [0,\infty)$ for which $f(0)=0$ and $f^{\prime}(x^2)=f(x)$ for any $x\in [0,\infty)$ .[/color]

2014 VTRMC, Problem 6

Let $S$ denote the set of $2$ by $2$ matrices with integer entries and determinant $1$, and let $T$ denote those matrices of $S$ which are congruent to the identity matrix $I\pmod3$ (so $\begin{pmatrix}a&b\\c&d\end{pmatrix}\in T$ means that $a,b,c,d\in\mathbb Z,ad-bc=1,$ and $3$ divides $b,c,a-1,d-1$). (a) Let $f:T\to\mathbb R$ be a function such that for every $X,Y\in T$ with $Y\ne I$, either $f(XY)>f(X)$ or $f(XY^{-1})>f(X)$. Show that given two finite nonempty subsets $A,B$ of $T$, there are matrices $a\in A$ and $b\in B$ such that if $a'\in A$, $b'\in B$ and $a'b'=ab$, then $a'=a$ and $b'=b$. (b) Show that there is no $f:S\to\mathbb R$ such that for every $X,Y\in S$ with $Y\ne\pm I$, either $f(XY)>f(X)$ or $f(XY^{-1})>f(X)$.

2006 Iran MO (3rd Round), 5

Find the biggest real number $ k$ such that for each right-angled triangle with sides $ a$, $ b$, $ c$, we have \[ a^{3}\plus{}b^{3}\plus{}c^{3}\geq k\left(a\plus{}b\plus{}c\right)^{3}.\]

2007 Estonia National Olympiad, 2

Let $ x, y, z$ be positive real numbers such that $ x^n, y^n$ and $ z^n$ are side lengths of some triangle for all positive integers $ n$. Prove that at least two of x, y and z are equal.

2010 JBMO Shortlist, 1

Find all integers $n$, $n \ge 1$, such that $n \cdot 2^{n+1}+1$ is a perfect square.

1970 IMO Longlists, 24

Let $\{n,p\}\in\mathbb{N}\cup \{0\}$ such that $2p\le n$. Prove that $\frac{(n-p)!}{p!}\le \left(\frac{n+1}{2}\right)^{n-2p}$. Determine all conditions under which equality holds.

1983 Swedish Mathematical Competition, 2

Show that \[ \cos x^2 + \cos y^2 - \cos xy < 3 \] for reals $x$, $y$.

1980 IMO, 20

The radii of the circumscribed circle and the inscribed circle of a regular $n$-gon, $n\ge 3$ are denoted by $R_n$ and $r_n$, respectively. Prove that \[\frac{r_n}{R_n}\ge\left(\frac{r_{n+1}}{R_{n+1}}\right)^2.\]

VI Soros Olympiad 1999 - 2000 (Russia), 9.10

Let $x, y, z$ be real numbers from interval $(0, 1)$. Prove that $$\frac{1}{x(1-y)}+\frac{1}{y(1-x)}+\frac{1}{z(1-x)}\ge \frac{3}{xyz+(1-x)(1-y)(1-z)}$$

2000 All-Russian Olympiad, 5

Prove the inequality \[ \sin^n (2x) + \left( \sin^n x - \cos^n x \right)^2 \le 1. \]

2016 China Western Mathematical Olympiad, 6

Let $a_1,a_2,\ldots,a_n$ be non-negative real numbers ,$S_k= \sum\limits_{i=1}^{k}a_i $ $(1\le k\le n)$.Prove that$$\sum\limits_{i=1}^{n}\left(a_iS_i\sum\limits_{j=i}^{n}a^2_j\right)\le \sum\limits_{i=1}^{n}\left(a_iS_i\right)^2$$

1963 IMO Shortlist, 3

In an $n$-gon $A_{1}A_{2}\ldots A_{n}$, all of whose interior angles are equal, the lengths of consecutive sides satisfy the relation \[a_{1}\geq a_{2}\geq \dots \geq a_{n}. \] Prove that $a_{1}=a_{2}= \ldots= a_{n}$.

2021 Moldova EGMO TST, 1

Tags: inequalities
Postive real numbers $a, b, c$ satisfy $abc=1$. Show that $$\frac{a^3+a^2}{1+bc}+\frac{b^3+b^2}{1+ca}+\frac{c^3+c^2}{1+ab}\geq3.$$

2023 Vietnam National Olympiad, 3

Find the maximum value of the positive real number $k$ such that the inequality $$\frac{1}{kab+c^2} +\frac{1} {kbc+a^2} +\frac{1} {kca+b^2} \geq \frac{k+3}{a^2+b^2+c^2} $$holds for all positive real numbers $a,b,c$ such that $a^2+b^2+c^2=2(ab+bc+ca).$

2016 Saint Petersburg Mathematical Olympiad, 2

Given the positive numbers $x_1, x_2,..., x_n$, such that $x_i \le 2x_j$ with $1 \le i < j \le n$. Prove that there are positive numbers $y_1\le y_2\le...\le y_n$, such that $x_k \le y_k \le 2x_k$ for all $k=1,2,..., n$

2014 JBMO Shortlist, 5

Tags: inequalities
Let $x,y$ and $z$ be non-negative real numbers satisfying the equation $x+y+z=xyz$. Prove that $2(x^2+y^2+z^2)\geq3(x+y+z)$.

2015 China Girls Math Olympiad, 7

Let $x_1,x_2,\cdots,x_n \in(0,1)$ , $n\geq2$. Prove that$$\frac{\sqrt{1-x_1}}{x_1}+\frac{\sqrt{1-x_2}}{x_2}+\cdots+\frac{\sqrt{1-x_n}}{x_n}<\frac{\sqrt{n-1}}{x_1 x_2 \cdots x_n}.$$