Found problems: 6530
2001 IMO Shortlist, 5
Find all positive integers $a_1, a_2, \ldots, a_n$ such that
\[
\frac{99}{100} = \frac{a_0}{a_1} + \frac{a_1}{a_2} + \cdots +
\frac{a_{n-1}}{a_n},
\]
where $a_0 = 1$ and $(a_{k+1}-1)a_{k-1} \geq a_k^2(a_k - 1)$ for $k = 1,2,\ldots,n-1$.
2018 Mathematical Talent Reward Programme, SAQ: P 1
Let $x, y, z$ are real numbers such that $x<y<z .$ Prove that
$$
(x-y)^{3}+(y-z)^{3}+(z-x)^{3}>0
$$
1991 Arnold's Trivium, 20
Find the derivative of the solution of the equation $\ddot{x} =x + A\dot{x}^2$, with initial conditions $x(0) = 1$, $\dot{x}(0) = 0$, with respect to the parameter $A$ for $A = 0$.
2005 Italy TST, 2
$(a)$ Prove that in a triangle the sum of the distances from the centroid to the sides is not less than three times the inradius, and find the cases of equality.
$(b)$ Determine the points in a triangle that minimize the sum of the distances to the sides.
2003 Estonia Team Selection Test, 5
Let $a, b, c$ be positive real numbers satisfying the condition $\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}=1$ . Prove the inequality $$\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}} \le \frac{3\sqrt3}{2}$$
When does the equality hold?
(L. Parts)
2019 Peru EGMO TST, 3
For a finite set $A$ of integers, define $s(A)$ as the number of values obtained by adding any two elements of $A$, not necessarily different. Analogously, define $r (A)$ as the number of values obtained by subtracting any two elements of $A$, not necessarily different.
For example, if $A = \{3,1,-1\}$
$\bullet$ The values obtained by adding any two elements of $A$ are $\{6,4,2,0,-2\}$ and so $s (A) = 5$.
$\bullet$ The values obtained by subtracting any two elements of $A$ are $\{4,2,0,-2,-4\}$ and as $r (A) = 5$.
Prove that for each positive integer $n$ there is a finite set $A$ of integers such that $r (A) \ge n s (A)$.
1998 India National Olympiad, 5
Suppose $a,b,c$ are three rela numbers such that the quadratic equation \[ x^2 - (a +b +c )x + (ab +bc +ca) = 0 \] has roots of the form $\alpha + i \beta$ where $\alpha > 0$ and $\beta \not= 0$ are real numbers. Show that
(i) The numbers $a,b,c$ are all positive.
(ii) The numbers $\sqrt{a}, \sqrt{b} , \sqrt{c}$ form the sides of a triangle.
1998 IMC, 2
$S$ ist the set of all cubic polynomials $f$ with $|f(\pm 1)| \leq 1$ and $|f(\pm \frac{1}{2})| \leq 1$. Find $\sup_{f \in S} \max_{-1 \leq x \leq 1} |f''(x)|$ and all members of $f$ which give equality.
1988 Bulgaria National Olympiad, Problem 3
Let $M$ be an arbitrary interior point of a tetrahedron $ABCD$, and let $S_A,S_B,S_C,S_D$ be the areas of the faces $BCD,ACD,ABD,ABC$, respectively. Prove that
$$S_A\cdot MA+S_B\cdot MB+S_C\cdot MC+S_D\cdot MD\ge9V,$$where $V$ is the volume of $ABCD$. When does equality hold?
1994 Dutch Mathematical Olympiad, 5
Three real numbers $ a,b,c$ satisfy the inequality $ |ax^2\plus{}bx\plus{}c| \le 1$ for all $ x \in [\minus{}1,1]$. Prove that $ |cx^2\plus{}bx\plus{}a| \le 2$ for all $ x \in [\minus{}1,1]$.
2007 Serbia National Math Olympiad, 3
Determine all pairs of natural numbers $(x; n)$ that satisfy the equation
\[x^{3}+2x+1 = 2^{n}.\]
2019 Jozsef Wildt International Math Competition, W. 65
If $a$, $b$, $c \geq 1$; $y \geq x \geq 1$; $p$, $q$, $r > 0$ then$$\left(\frac{1+y\left(a^pb^qc^r\right)^{\frac{1}{p+q+r}}}{1+x\left(a^pb^qc^r\right)^{\frac{1}{p+q+r}}}\right)^{\frac{p+q+r}{\left(a^pb^qc^r\right)^{\frac{1}{p+q+r}}}}\left(\frac{1+xa}{1+ya}\right)^{\frac{p}{a}}\left(\frac{1+xb}{1+yb}\right)^{\frac{q}{b}}\left(\frac{1+xc}{1+yc}\right)^{\frac{r}{c}}$$ $$\geq \prod \limits_{cyc}\left(\frac{1+y\left(a^pb^q\right)^{\frac{1}{p+q}}}{1+x\left(a^pb^q\right)^{\frac{1}{p+q}}}\right)^{\frac{p+q}{\left(a^pb^q\right)^{\frac{1}{p+q}}}}$$
2017 Kyrgyzstan Regional Olympiad, 3
If $ {|x|}<{1}$ and ${|y|}<1$ then prove that $|\frac{x-y}{1-xy}|<1$
2010 Belarus Team Selection Test, 5.3
Let $f$ be any function that maps the set of real numbers into the set of real numbers. Prove that there exist real numbers $x$ and $y$ such that \[f\left(x-f(y)\right)>yf(x)+x\]
[i]Proposed by Igor Voronovich, Belarus[/i]
1990 Tournament Of Towns, (263) 1
Suppose two positive real numbers are given. Prove that if their sum is less than their product then their sum is greater than four.
(N Vasiliev, Moscow)
2011 China Northern MO, 7
In $\triangle ABC$ , then \[\frac{1}{1+\cos^2 A+\cos^2 B}+\frac{1}{1+\cos^2 B+\cos^2 C}+\frac{1}{1+\cos^2 C+\cos^2 A}\le 2\]
2021 Iran MO (2nd Round), 5
1400 real numbers are given. Prove that one can choose three of them like $x,y,z$ such that :
$$\left|\frac{(x-y)(y-z)(z-x)}{x^4+y^4+z^4+1}\right| < 0.009$$
2014 NIMO Problems, 6
For all positive integers $k$, define $f(k)=k^2+k+1$. Compute the largest positive integer $n$ such that \[2015f(1^2)f(2^2)\cdots f(n^2)\geq \Big(f(1)f(2)\cdots f(n)\Big)^2.\][i]Proposed by David Altizio[/i]
2013 Moldova Team Selection Test, 3
Consider the obtuse-angled triangle $\triangle ABC$ and its side lengths $a,b,c$. Prove that $a^3\cos\angle A +b^3\cos\angle B + c^3\cos\angle C < abc$.
2003 Regional Competition For Advanced Students, 1
Find the minimum value of the expression $ \frac{a\plus{}1}{a(a\plus{}2)}\plus{}\frac{b\plus{}1}{b(b\plus{}2)}\plus{}\frac{c\plus{}1}{c(c\plus{}2)}$, where $ a,b,c$ are positive real numbers with $ a\plus{}b\plus{}c \le 3$.
2007 Brazil National Olympiad, 3
Consider $ n$ points in a plane which are vertices of a convex polygon. Prove that the set of the lengths of the sides and the diagonals of the polygon has at least $ \lfloor n/2\rfloor$ elements.
1997 Estonia Team Selection Test, 2
Prove that for all positive real numbers $a_1,a_2,\cdots a_n$ \[\frac{1}{\frac{1}{1+a_1}+\frac{1}{1+a_2}+\cdots +\frac{1}{1+a_n}}-\frac{1}{\frac{1}{a_1}+\frac{1}{a_2}+\cdots +\frac{1}{a_n}}\geq \frac{1}{n}\] When does the inequality hold?
2018 Dutch IMO TST, 2
Find all functions $f : R \to R$ such that $f(x^2)-f(y^2) \le (f(x)+y) (x-f(y))$ for all $x, y \in R$.
2012 Mediterranean Mathematics Olympiad, 3
Consider a binary matrix $M$(all entries are $0$ or $1$) on $r$ rows and $c$ columns, where every row and every column contain at least one entry equal to $1$. Prove that there exists an entry $M(i,j) = 1$, such that the corresponding row-sum $R(i)$ and column-sum $C(j)$ satisfy $r R(i)\ge c C(j)$.
(Proposed by Gerhard Woeginger, Austria)
1981 National High School Mathematics League, 9
$O$ is a circle with a radius of $1$, with strings $CD$ and $EF$. $CD//EF$, and diameter $AB$ intersects $CD,EF$ at $P,Q$. If $\angle BPD=\frac{\pi}{4}$, prove that
$$PC\cdot QE+PD \cdot QF<2.$$