This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

1999 Baltic Way, 3

Tags: inequalities
Determine all positive integers $n\ge 3$ such that the inequality \[a_1a_2+a_2a_3+\ldots a_{n-1}a_n\le 0\] holds for all real numbers $a_1,a_2,\ldots , a_n$ which satisfy $a_1+a_2+\ldots +a_n=0$.

2020 Dutch IMO TST, 1

Given are real numbers $a_1, a_2,..., a_{2020}$, not necessarily different. For every $n \ge 2020$, define $a_{n + 1}$ as the smallest real zero of the polynomial $$P_n (x) = x^{2n} + a_1x^{2n - 2} + a_2x^{2n - 4} +... + a_{n -1}x^2 + a_n$$, if it exists. Assume that $a_{n + 1}$ exists for all $n \ge 2020$. Prove that $a_{n + 1} \le a_n$ for all $n \ge 2021$.

1997 Bosnia and Herzegovina Team Selection Test, 4

$a)$ In triangle $ABC$ let $A_1$, $B_1$ and $C_1$ be touching points of incircle $ABC$ with $BA$, $CA$ and $AB$, respectively. Let $l_1$, $l_2$ and $l_3$ be lenghts of arcs $ B_1C_1$, $A_1C_1$, $B_1A_1$ of incircle $ABC$, respectively, which does not contain points $A_1$, $B_1$ and $C_1$, respectively. Does the following inequality hold: $$ \frac{a}{l_1}+\frac{b}{l_2}+\frac{c}{l_3} \geq \frac{9\sqrt{3}}{\pi}$$ $b)$ Tetrahedron $ABCD$ has three pairs of equal opposing sides. Find length of height of tetrahedron in function od lengths of sides

2014 IFYM, Sozopol, 8

Some number of coins is firstly separated into 200 groups and then to 300 groups. One coin is [i]special[/i], if on the second grouping it is in a group that has less coins than the previous one, in the first grouping, that it was in. Find the least amount of [i]special[/i] coins we can have.

2004 China Western Mathematical Olympiad, 3

Tags: inequalities
Find all reals $ k$ such that \[ a^3 \plus{} b^3 \plus{} c^3 \plus{} d^3 \plus{} 1\geq k(a \plus{} b \plus{} c \plus{} d) \] holds for all $ a,b,c,d\geq \minus{} 1$. [i]Edited by orl.[/i]

2014 District Olympiad, 1

Prove that: [list=a][*]$\displaystyle\left( \frac{1}{2}\right) ^{3}+\left( \frac{2}{3}\right)^{3}+\left( \frac{5}{6}\right) ^{3}=1$ [*]$3^{33}+4^{33}+5^{33}<6^{33}$[/list]

1983 Vietnam National Olympiad, 2

Tags: inequalities
Decide whether $S_n$ or $T_n$ is larger, where \[S_n =\displaystyle\sum_{k=1}^n \frac{k}{(2n - 2k + 1)(2n - k + 1)}, T_n =\displaystyle\sum_{k=1}^n\frac{1}{k}\]

1997 IMO Shortlist, 19

Let $ a_1\geq \cdots \geq a_n \geq a_{n \plus{} 1} \equal{} 0$ be real numbers. Show that \[ \sqrt {\sum_{k \equal{} 1}^n a_k} \leq \sum_{k \equal{} 1}^n \sqrt k (\sqrt {a_k} \minus{} \sqrt {a_{k \plus{} 1}}). \] [i]Proposed by Romania[/i]

2020 China Northern MO, BP2

Given $a,b,c \in \mathbb{R}$ satisfying $a+b+c=a^2+b^2+c^2=1$, show that $\frac{-1}{4} \leq ab \leq \frac{4}{9}$.

2019 Azerbaijan BMO TST, 3

Tags: inequalities
Let $ a, b, c$ be positive real numbers such that $ abc = 1. $ Prove that: $$ 2 (a^ 2 + b^ 2 + c^ 2) \left (\frac 1 {a^ 2} + \frac 1{b^ 2}+ \frac 1{c^2}\right)\geq 3(a+ b + c + ab + bc + ca).$$

1939 Eotvos Mathematical Competition, 1

Let $a_1$, $a_2$, $b_1$, $b_2$, $c_1$ and $c_2$ be real numbers for which $a_1a_2 > 0$, $a_1c_1 \ge b^2_1$ and $a_2c_2 > b^2_2$. Prove that $$(a_1 + a_2)(c_1 + c_2) \ge (b_1 + b_2)^2$$

2018 China Team Selection Test, 6

Let $A_1$, $A_2$, $\cdots$, $A_m$ be $m$ subsets of a set of size $n$. Prove that $$ \sum_{i=1}^{m} \sum_{j=1}^{m}|A_i|\cdot |A_i \cap A_j|\geq \frac{1}{mn}\left(\sum_{i=1}^{m}|A_i|\right)^3.$$

2000 All-Russian Olympiad, 2

Let $-1 < x_1 < x_2 , \cdots < x_n < 1$ and $x_1^{13} + x_2^{13} + \cdots + x_n^{13} = x_1 + x_2 + \cdots + x_n$. Prove that if $y_1 < y_2 < \cdots < y_n$, then \[ x_1^{13}y_1 + \cdots + x_n^{13}y_n < x_1y_1 + x_2y_2 + \cdots + x_ny_n. \]

2005 Irish Math Olympiad, 1

Let $ X$ be a point on the side $ AB$ of a triangle $ ABC$, different from $ A$ and $ B$. Let $ P$ and $ Q$ be the incenters of the triangles $ ACX$ and $ BCX$ respectively, and let $ M$ be the midpoint of $ PQ$. Prove that: $ MC>MX$.

1986 USAMO, 1

$(\text{a})$ Do there exist 14 consecutive positive integers each of which is divisible by one or more primes $p$ from the interval $2\le p \le 11$? $(\text{b})$ Do there exist 21 consecutive positive integers each of which is divisible by one or more primes $p$ from the interval $2\le p \le 13$?

2013 AMC 12/AHSME, 17

Let $a,b,$ and $c$ be real numbers such that \begin{align*} a+b+c &= 2, \text{ and} \\ a^2+b^2+c^2&= 12 \end{align*} What is the difference between the maximum and minimum possible values of $c$? $ \textbf{(A)}\ 2\qquad\textbf{(B)}\ \frac{10}{3}\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ \frac{16}{3}\qquad\textbf{(E)}\ \frac{20}{3} $

2011 ELMO Shortlist, 4

In terms of $n\ge2$, find the largest constant $c$ such that for all nonnegative $a_1,a_2,\ldots,a_n$ satisfying $a_1+a_2+\cdots+a_n=n$, the following inequality holds: \[\frac1{n+ca_1^2}+\frac1{n+ca_2^2}+\cdots+\frac1{n+ca_n^2}\le \frac{n}{n+c}.\] [i]Calvin Deng.[/i]

2007 Romania Team Selection Test, 1

Prove that the function $f : \mathbb{N}\longrightarrow \mathbb{Z}$ defined by $f(n) = n^{2007}-n!$, is injective.

2024 HMIC, 2

Suppose that $a$, $b$, $c$, and $d$ are real numbers such that $a+b+c+d=8$. Compute the minimum possible value of \[20(a^2+b^2+c^2+d^2)-\sum_{\text{sym}}a^3b,\] where the sum is over all $12$ symmetric terms. [i]Derek Liu[/i]

2016 Hanoi Open Mathematics Competitions, 3

Given two positive numbers $a,b$ such that $a^3 +b^3 = a^5 +b^5$, then the greatest value of $M = a^2 + b^2 - ab$ is (A): $\frac14$ (B): $\frac12$ (C): $2$ (D): $1$ (E): None of the above.

2007 Peru IMO TST, 2

Tags: inequalities
Let $a,b,c$ be positive real numbers, such that: $a+b+c \geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}.$ Prove that: \[a+b+c \geq \frac{3}{a+b+c}+\frac{2}{abc}. \]

1992 Canada National Olympiad, 2

Tags: inequalities
For $ x,y,z \geq 0,$ establish the inequality \[ x(x\minus{}z)^2 \plus{} y(y\minus{}z)^2 \geq (x\minus{}z)(y\minus{}z)(x\plus{}y\minus{}z)\] and determine when equality holds.

2007 ISI B.Stat Entrance Exam, 5

Show that \[-2 \le \cos \theta\left(\sin \theta + \sqrt{\sin ^2 \theta +3}\right) \le 2\] for all values of $\theta$.

1987 IMO Longlists, 20

Let $x_1,x_2,\ldots,x_n$ be real numbers satisfying $x_1^2+x_2^2+\ldots+x_n^2=1$. Prove that for every integer $k\ge2$ there are integers $a_1,a_2,\ldots,a_n$, not all zero, such that $|a_i|\le k-1$ for all $i$, and $|a_1x_1+a_2x_2+\ldots+a_nx_n|\le{(k-1)\sqrt n\over k^n-1}$. [i](IMO Problem 3)[/i] [i]Proposed by Germany, FR[/i]

2018 Austria Beginners' Competition, 1

Let $a, b$ and $c$ denote positive real numbers. Prove that $\frac{a}{c}+\frac{c}{b}\ge \frac{4a}{a + b}$ . When does equality hold? (Walther Janous)