This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

1982 IMO Longlists, 21

Al[u][b]l[/b][/u] edges and all diagonals of regular hexagon $A_1A_2A_3A_4A_5A_6$ are colored blue or red such that each triangle $A_jA_kA_m, 1 \leq j < k < m\leq 6$ has at least one red edge. Let $R_k$ be the number of red segments $A_kA_j, (j \neq k)$. Prove the inequality \[\sum_{k=1}^6 (2R_k-7)^2 \leq 54.\]

2012 China Western Mathematical Olympiad, 4

$P$ is a point in the $\Delta ABC$, $\omega $ is the circumcircle of $\Delta ABC $. $BP \cap \omega = \left\{ {B,{B_1}} \right\}$,$CP \cap \omega = \left\{ {C,{C_1}} \right\}$, $PE \bot AC$,$PF \bot AB$. The radius of the inscribed circle and circumcircle of $\Delta ABC $ is $r,R$. Prove $\frac{{EF}}{{{B_1}{C_1}}} \geqslant \frac{r}{R}$.

2014 District Olympiad, 1

Tags: inequalities
[list=a] [*]Prove that for any real numbers $a$ and $b$ the following inequality holds: \[ \left( a^{2}+1\right) \left( b^{2}+1\right) +50\geq2\left( 2a+1\right)\left( 3b+1\right)\] [*]Find all positive integers $n$ and $p$ such that: \[ \left( n^{2}+1\right) \left( p^{2}+1\right) +45=2\left( 2n+1\right)\left( 3p+1\right) \][/list]

2009 Today's Calculation Of Integral, 466

For $ n \equal{} 1,\ 2,\ 3,\ \cdots$, let $ (p_n,\ q_n)\ (p_n > 0,\ q_n > 0)$ be the point of intersection of $ y \equal{} \ln (nx)$ and $ \left(x \minus{} \frac {1}{n}\right)^2 \plus{} y^2 \equal{} 1$. (1) Show that $ 1 \minus{} q_n^2\leq \frac {(e \minus{} 1)^2}{n^2}$ to find $ \lim_{n\to\infty} q_n$. (2) Find $ \lim_{n\to\infty} n\int_{\frac {1}{n}}^{p_n} \ln (nx)\ dx$.

Mexican Quarantine Mathematical Olympiad, #1

Let $a, b$ and $c$ be real numbers such that $$\lceil a \rceil + \lceil b \rceil + \lceil c \rceil + \lfloor a + b \rfloor + \lfloor b + c \rfloor + \lfloor c + a \rfloor = 2020$$ Prove that $$\lfloor a \rfloor + \lfloor b \rfloor + \lfloor c \rfloor + \lceil a + b + c \rceil \ge 1346$$ Note: $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$, and $\lceil x \rceil$ is the smallest integer greater than or equal to $x$. That is, $\lfloor x \rfloor$ is the unique integer satisfying $\lfloor x \rfloor \le x < \lfloor x \rfloor + 1$, and $\lceil x \rceil$ is the unique integer satisfying $\lceil x \rceil - 1 < x \le \lceil x \rceil$. [i]Proposed by Ariel García[/i]

2013 Kyiv Mathematical Festival, 2

For every positive $a, b,c, d$ such that $a + c \le ac$ and $b + d \le bd$ prove that $\frac{ab}{a + b} +\frac{bc}{b + c} +\frac{cd}{c + d} +\frac{da}{d + a} \ge 4$

2022 Romania National Olympiad, P2

Let $z_1$ and $z_2$ be complex numbers. Prove that \[|z_1+z_2|+|z_1-z_2|\leqslant |z_1|+|z_2|+\max\{|z_1|,|z_2|\}.\][i]Vlad Cerbu and Sorin Rădulescu[/i]

2015 Greece JBMO TST, 1

If $x,y,z>0$, prove that $(3x+y)(3y+z)(3z+x) \ge 64xyz$. When we have equality;

2017 Vietnamese Southern Summer School contest, Problem 2

Let $a,b,c$ be the positive real numbers satisfying $a^2+b^2+c^2=3$. Prove that: $$\frac{a}{b(a+c)}+\frac{b}{c(b+a)}+\frac{c}{a(c+b)}\geq \frac{3}{2}.$$

2005 All-Russian Olympiad, 1

Do there exist a bounded function $f: \mathbb{R}\to\mathbb{R}$ such that $f(1)>0$ and $f(x)$ satisfies an inequality $f^2(x+y)\ge f^2(x)+2f(xy)+f^2(y)$?

2002 Moldova National Olympiad, 4

The circumradius of a tetrahedron $ ABCD$ is $ R$, and the lenghts of the segments connecting the vertices $ A,B,C,D$ with the centroids of the opposite faces are equal to $ m_a,m_b,m_c$ and $ m_d$, respectively. Prove that: $ m_a\plus{}m_b\plus{}m_c\plus{}m_d\leq \dfrac{16}{3}R$

2014 ELMO Shortlist, 8

Let $a, b, c$ be positive reals with $a^{2014}+b^{2014}+c^{2014}+abc=4$. Prove that \[ \frac{a^{2013}+b^{2013}-c}{c^{2013}} + \frac{b^{2013}+c^{2013}-a}{a^{2013}} + \frac{c^{2013}+a^{2013}-b}{b^{2013}} \ge a^{2012}+b^{2012}+c^{2012}. \][i]Proposed by David Stoner[/i]

2010 Morocco TST, 2

Let $a$, $b$, $c$ be positive real numbers with $abc \leq a+b+c$. Show that \[ a^2 + b^2 + c^2 \geq \sqrt 3 abc. \] [i]Cristinel Mortici, Romania[/i]

2023 ISI Entrance UGB, 6

Let $\{u_n\}_{n \ge 1}$ be a sequence of real numbers defined as $u_1 = 1$ and \[ u_{n+1} = u_n + \frac{1}{u_n} \text{ for all $n \ge 1$.}\] Prove that $u_n \le \frac{3\sqrt{n}}{2}$ for all $n$.

2020 Miklós Schweitzer, 11

Given a real number $p>1$, a continuous function $h\colon [0,\infty)\to [0,\infty)$, and a smooth vector field $Y\colon \mathbb{R}^n \to \mathbb{R}^n$ with $\mathrm{div}~Y=0$, prove the following inequality \[\int_{\mathbb{R}^n}h(|x|)|x|^{p}\leq \int_{\mathbb{R}^{n}}h(|x|)|x+Y(x)|^{p}.\]

1983 Czech and Slovak Olympiad III A, 5

Find all pair $(x,y)$ of positive integers satisfying $$\left|\frac{x}{y}-\sqrt2\right|<\frac{1}{y^3}.$$

1975 AMC 12/AHSME, 3

Tags: inequalities
Which of the following inequalities are satisfied for all real numbers $ a$, $ b$, $ c$, $ x$, $ y$, $ z$ which satisfy the conditions $ x < a$, $ y < b$, and $ z < c$? $ \text{I}. \ xy \plus{} yz \plus{} zx < ab \plus{} bc \plus{} ca$ $ \text{II}. \ x^2 \plus{} y^2 \plus{} z^2 < a^2 \plus{} b^2 \plus{} c^2$ $ \text{III}. \ xyz < abc$ $ \textbf{(A)}\ \text{None are satisfied.} \qquad \textbf{(B)}\ \text{I only} \qquad \textbf{(C)}\ \text{II only} \qquad$ $ \textbf{(D)}\ \text{III only} \qquad \textbf{(E)}\ \text{All are satisfied.}$

2003 Putnam, 2

Let $a_1, a_2, \cdots , a_n$ and $b_1, b_2,\cdots, b_n$ be nonnegative real numbers. Show that \[(a_1a_2 \cdots a_n)^{1/n}+ (b_1b_2 \cdots b_n)^{1/n} \le ((a_1 + b_1)(a_2 + b_2) \cdots (a_n + b_n))^{1/n}\]

1996 All-Russian Olympiad Regional Round, 10.1

Prove that if $a, b, c$ are positive numbers and $ab + bc + ca > a+ b + c$, then $a + b + c > 3$.

2001 South africa National Olympiad, 1

$ABCD$ is a convex quadrilateral with perimeter $p$. Prove that \[ \dfrac{1}{2}p < AC + BD < p. \] (A polygon is convex if all of its interior angles are less than $180^\circ$.)

2020 China Team Selection Test, 5

Let $a_1,a_2,\cdots,a_n$ be a permutation of $1,2,\cdots,n$. Among all possible permutations, find the minimum of $$\sum_{i=1}^n \min \{ a_i,2i-1 \}.$$

1984 All Soviet Union Mathematical Olympiad, 375

Prove that every positive $x,y$ and real $a$ satisfy inequality $x^{\sin ^2a} y^{\cos^2a} < x + y$.

2009 Princeton University Math Competition, 7

Find the maximal positive integer $n$, so that for any real number $x$ we have $\sin^{n}{x}+\cos^{n}{x} \geq \frac{1}{n}$.

1994 Poland - First Round, 12

The sequence $(x_n)$ is given by $x_1=\frac{1}{2},$ $x_n=\frac{2n-3}{2n} \cdot x_{n-1}$ for $n=2,3,... .$ Prove that for all natural numbers $n \geq 1$ the following inequality holds $x_1+x_2+...+x_n < 1$.

2007 VJIMC, Problem 4

Let $f:[0,1]\to[0,\infty)$ be an arbitrary function satisfying $$\frac{f(x)+f(y)}2\le f\left(\frac{x+y}2\right)+1$$ for all pairs $x,y\in[0,1]$. Prove that for all $0\le u<v<w\le1$, $$\frac{w-v}{w-u}f(u)+\frac{v-u}{w-u}f(w)\le f(v)+2.$$