Found problems: 6530
2007 Junior Balkan Team Selection Tests - Romania, 3
Let $ABC$ an isosceles triangle, $P$ a point belonging to its interior. Denote $M$, $N$ the intersection points of the circle $\mathcal{C}(A, AP)$ with the sides $AB$ and $AC$, respectively.
Find the position of $P$ if $MN+BP+CP$ is minimum.
2006 Hanoi Open Mathematics Competitions, 9
Let $x,y,z$ be real numbers such that $x^2+y^2+z^2=1$.Find the largest posible value of
$$|x^3+y^3+z^3-xyz|$$
2014 USAMTS Problems, 2:
Let $a, b, c, x$ and $y$ be positive real numbers such that $ax + by \leq bx + cy \leq cx + ay$.
Prove that $b \leq c$.
2006 District Olympiad, 2
Let $n,p \geq 2$ be two integers and $A$ an $n\times n$ matrix with real elements such that $A^{p+1} = A$.
a) Prove that $\textrm{rank} \left( A \right) + \textrm{rank} \left( I_n - A^p \right) = n$.
b) Prove that if $p$ is prime then \[ \textrm{rank} \left( I_n - A \right) = \textrm{rank} \left( I_n - A^2 \right) = \ldots = \textrm{rank} \left( I_n - A^{p-1} \right) . \]
2007 Balkan MO Shortlist, A3
For $n\in\mathbb{N}$, $n\geq 2$, $a_{i}, b_{i}\in\mathbb{R}$, $1\leq i\leq n$, such that \[\sum_{i=1}^{n}a_{i}^{2}=\sum_{i=1}^{n}b_{i}^{2}=1, \sum_{i=1}^{n}a_{i}b_{i}=0. \] Prove that
\[\left(\sum_{i=1}^{n}a_{i}\right)^{2}+\left(\sum_{i=1}^{n}b_{i}\right)^{2}\leq n. \]
[i]Cezar Lupu & Tudorel Lupu[/i]
2012 CentroAmerican, 3
Let $a,b,c$ be real numbers that satisfy $\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c} =1$ and $ab+bc+ac >0$.
Show that \[ a+b+c - \frac{abc}{ab+bc+ac} \ge 4 \]
2000 Saint Petersburg Mathematical Olympiad, 11.2
Point $O$ is the origin of a space. Points $A_1, A_2,\dots, A_n$ have nonnegative coordinates. Prove the following inequality:
$$|\overrightarrow{OA_1}|+|\overrightarrow {OA_2}|+\dots+|\overrightarrow {OA_n}|\leq \sqrt{3}|\overrightarrow {OA_1}+\overrightarrow{OA_2}+\dots+\overrightarrow{OA_n}|$$
[I]Proposed by A. Khrabrov[/i]
2022 Germany Team Selection Test, 1
Let $n\geq 2$ be an integer and let $a_1, a_2, \ldots, a_n$ be positive real numbers with sum $1$. Prove that $$\sum_{k=1}^n \frac{a_k}{1-a_k}(a_1+a_2+\cdots+a_{k-1})^2 < \frac{1}{3}.$$
2010 JBMO Shortlist, 5
Let $ x, y, z > 0 $ with $ x \leq 2, \;y \leq 3 \;$ and $ x+y+z = 11 $
Prove that $xyz \leq 36$
2014 Moldova Team Selection Test, 1
Consider $n \geq 2 $ positive numbers $0<x_1 \leq x_2 \leq ... \leq x_n$, such that $x_1 + x_2 + ... + x_n = 1$. Prove that if $x_n \leq \dfrac{2}{3}$, then there exists a positive integer $1 \leq k \leq n$ such that $\dfrac{1}{3} \leq x_1+x_2+...+x_k < \dfrac{2}{3}$.
Kvant 2019, M2550
Let $a,b,c>0$ be real numbers. Prove that
$$\frac{a+b}{\sqrt{b+c}}+\frac{b+c}{\sqrt{c+a}}+\frac{c+a}{\sqrt{a+b}}\geq \sqrt{2a}+ \sqrt{2b}+ \sqrt{2c}$$
Б. Кайрат (Казахстан), А. Храбров
2016 Estonia Team Selection Test, 9
Let $n$ be a positive integer such that there exists a positive integer that is less than $\sqrt{n}$ and does not divide $n$. Let $(a_1, . . . , a_n)$ be an arbitrary permutation of $1, . . . , n$. Let $a_{i1} < . . . < a_{ik}$ be its maximal increasing subsequence and let $a_{j1} > . . . > a_{jl}$ be its maximal decreasing subsequence.
Prove that tuples $(a_{i1}, . . . , a_{ik})$ and $(a_{j1}, . . . , a_{jl} )$ altogether contain at least one number that does not divide $n$.
2010 IberoAmerican Olympiad For University Students, 5
Let $A,B$ be matrices of dimension $2010\times2010$ which commute and have real entries, such that $A^{2010}=B^{2010}=I$, where $I$ is the identity matrix. Prove that if $\operatorname{tr}(AB)=2010$, then $\operatorname{tr}(A)=\operatorname{tr}(B)$.
2024 Macedonian TST, Problem 2
Let $u,v,w$ be positive real numbers. Prove that there exists a cyclic permutation $(x,y,z)$ of $(u,v,w)$ such that for all positive real numbers $a,b,c$ the following holds:
\[
\frac{a}{x\,a + y\,b + z\,c}
\;+\;
\frac{b}{x\,b + y\,c + z\,a}
\;+\;
\frac{c}{x\,c + y\,a + z\,b}
\;\ge\;
\frac{3}{x + y + z}.
\]
2006 JBMO ShortLists, 2
Let $ x,y,z$ be positive real numbers such that $ x\plus{}2y\plus{}3z\equal{}\frac{11}{12}$. Prove the inequality $ 6(3xy\plus{}4xz\plus{}2yz)\plus{}6x\plus{}3y\plus{}4z\plus{}72xyz\le \frac{107}{18}$.
1971 Bundeswettbewerb Mathematik, 4
Inside a square with side lengths $1$ a broken line of length $>1000$ without selfintersection is drawn.
Show that there is a line parallel to a side of the square that intersects the broken line in at least $501$ points.
2020 China Team Selection Test, 5
Let $a_1,a_2,\cdots,a_n$ be a permutation of $1,2,\cdots,n$. Among all possible permutations, find the minimum of $$\sum_{i=1}^n \min \{ a_i,2i-1 \}.$$
1982 IMO Longlists, 51
Let n numbers $x_1, x_2, \ldots, x_n$ be chosen in such a way that $1 \geq x_1 \geq x_2 \geq \cdots \geq x_n \geq 0$. Prove that
\[(1 + x_1 + x_2 + \cdots + x_n)^\alpha \leq 1 + x_1^\alpha+ 2^{\alpha-1}x_2^\alpha+ \cdots+ n^{\alpha-1}x_n^\alpha\]
if $0 \leq \alpha \leq 1$.
2012 Belarus Team Selection Test, 4
Given $0 < a < b < c$ prove that $$ a^{20}b^{12} + b^{20}c^{12 }+ c^{20}a^{12} <b^{20}a^{12}+ a^{20}c^{12} + c^{20}b^{12} $$
(I. Voronovich)
2002 China Team Selection Test, 1
In acute triangle $ ABC$, show that:
$ \sin^3{A}\cos^2{(B \minus{} C)} \plus{} \sin^3{B}\cos^2{(C \minus{} A)} \plus{} \sin^3{C}\cos^2{(A \minus{} B)} \leq 3\sin{A} \sin{B} \sin{C}$
and find out when the equality holds.
2012 China Second Round Olympiad, 9
Given a function $f(x)=a\sin x-\frac{1}{2}\cos 2x+a-\frac{3}{a}+\frac{1}{2}$, where $a\in\mathbb{R}, a\ne 0$.
[b](1)[/b] If for any $x\in\mathbb{R}$, inequality $f(x)\le 0$ holds, find all possible value of $a$.
[b](2)[/b] If $a\ge 2$, and there exists $x\in\mathbb{R}$, such that $f(x)\le 0$. Find all possible value of $a$.
1935 Eotvos Mathematical Competition, 1
Let $n$ be a positive integer. Prove that
$$\frac{a_1}{b_1}+ \frac{a_2}{b_2}+ ...+\frac{a_n}{b_n} \ge n $$
where $(b_1, b_2, ..., b_n)$ is any permutation of the positive real numbers $a_1, a_2, ..., a_n$.
PEN A Problems, 82
Which integers can be represented as \[\frac{(x+y+z)^{2}}{xyz}\] where $x$, $y$, and $z$ are positive integers?
1997 Flanders Math Olympiad, 3
$\Delta oa_1b_1$ is isosceles with $\angle a_1ob_1 = 36^\circ$. Construct $a_2,b_2,a_3,b_3,...$ as below, with $|oa_{i+1}| = |a_ib_i|$ and $\angle a_iob_i = 36^\circ$, Call the summed area of the first $k$ triangles $A_k$.
Let $S$ be the area of the isocseles triangle, drawn in - - -, with top angle $108^\circ$ and $|oc|=|od|=|oa_1|$, going through the points $b_2$ and $a_2$ as shown on the picture.
(yes, $cd$ is parallel to $a_1b_1$ there)
Show $A_k < S$ for every positive integer $k$.
[img]http://www.mathlinks.ro/Forum/album_pic.php?pic_id=284[/img]
2005 Moldova Team Selection Test, 4
Find the largest positive $p$ ($p>1$) such, that $\forall a,b,c\in[\frac1p,p]$ the following inequality takes place
\[9(ab+bc+ca)(a^2+b^2+c^2)\geq(a+b+c)^4\]