This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2014 China Northern MO, 6

Tags: inequalities
Let $x,y,z,w $ be real numbers such that $x+2y+3z+4w=1$. Find the minimum of $x^2+y^2+z^2+w^2+(x+y+z+w)^2$.

1994 Polish MO Finals, 2

A parallelopiped has vertices $A_1, A_2, ... , A_8$ and center $O$. Show that: \[ 4 \sum_{i=1}^8 OA_i ^2 \leq \left(\sum_{i=1}^8 OA_i \right) ^2 \]

2023 China Western Mathematical Olympiad, 5

Let $a_1,a_2,\cdots,a_{100}\geq 0$ such that $\max\{a_{i-1}+a_i,a_i+a_{i+1}\}\geq i $ for any $2\leq i\leq 99.$ Find the minimum of $a_1+a_2+\cdots+a_{100}.$

JOM 2015 Shortlist, A2

Let $ a, b, c $ be positive real numbers greater or equal to $ 3 $. Prove that $$ 3(abc+b+2c)\ge 2(ab+2ac+3bc) $$ and determine all equality cases.

2002 Canada National Olympiad, 3

Prove that for all positive real numbers $a$, $b$, and $c$, \[ \frac{a^3}{bc} + \frac{b^3}{ca} + \frac{c^3}{ab} \geq a+b+c \] and determine when equality occurs.

2021 Moldova Team Selection Test, 7

Tags: inequalities
Positive real numbers $a$, $b$, $c$ satisfy $a+b+c=1$. Show that $$\frac{a+1}{\sqrt{a+bc}}+\frac{b+1}{\sqrt{b+ca}}+\frac{c+1}{\sqrt{c+ab}} \geq \frac{2}{a^2+b^2+c^2}.$$ When does the equality take place?

2001 USA Team Selection Test, 6

Tags: inequalities
Let $a,b,c$ be positive real numbers such that \[ a+b+c\geq abc. \] Prove that at least two of the inequalities \[ \frac{2}{a}+\frac{3}{b}+\frac{6}{c}\geq6,\;\;\;\;\;\frac{2}{b}+\frac{3}{c}+\frac{6}{a}\geq6,\;\;\;\;\;\frac{2}{c}+\frac{3}{a}+\frac{6}{b}\geq6 \] are true.

2004 All-Russian Olympiad Regional Round, 11.7

For what natural numbers $n$ for any numbers $a, b , c$, which are values of the angles of an acute triangle, the following inequality is true: $$\sin na + \sin nb + \sin nc < 0?$$

2009 Today's Calculation Of Integral, 490

For a positive real number $ a > 1$, prove the following inequality. $ \frac {1}{a \minus{} 1}\left(1 \minus{} \frac {\ln a}{a\minus{}1}\right) < \int_0^1 \frac {x}{a^x}\ dx < \frac {1}{\ln a}\left\{1 \minus{} \frac {\ln (\ln a \plus{} 1)}{\ln a}\right\}$

2012 Kyiv Mathematical Festival, 2

Positive numbers $x, y, z$ satisfy $x^2+y^2+z^2+xy+yz+zy \le 1$. Prove that $\big( \frac{1}{x}-1\big) \big( \frac{1}{y}-1\big)\big( \frac{1}{z}-1\big) \ge 9 \sqrt6 -19$.

1997 Estonia National Olympiad, 2

Tags: inequalities
Let $x$ and $y$ be real numbers. Show that\[x^2+y^2+1>x\sqrt{y^2+1}+y\sqrt{x^2+1}.\]

2000 France Team Selection Test, 3

Tags: inequalities
$a,b,c,d$ are positive reals with sum $1$. Show that $\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a} \ge \frac{1}{2}$ with equality iff $a=b=c=d=\frac{1}{4}$.

2007 Italy TST, 1

We have a complete graph with $n$ vertices. We have to color the vertices and the edges in a way such that: no two edges pointing to the same vertice are of the same color; a vertice and an edge pointing him are coloured in a different way. What is the minimum number of colors we need?

2004 Gheorghe Vranceanu, 2

Solve in $ \mathbb{R}^2 $ the following equation. $$ 9^{\sqrt x} +9^{\sqrt{y}} +9^{1/\sqrt{xy}} =\frac{81}{\sqrt{x} +\sqrt{y} +1/\sqrt{xy}} $$ [i]O. Trofin[/i]

2021 239 Open Mathematical Olympiad, 4

Different positive $a, b, c$ are such that $a^{239} = ac- 1$ and $b^{239} = bc- 1$.Prove that $238^2 (ab)^{239} <1$.

2016 India Regional Mathematical Olympiad, 6

Positive integers $a, b, c$ satisfy $\frac1a +\frac1b +\frac1c<1$. Prove that $\frac1a +\frac1b +\frac1c\le \frac{41}{42}$. Also prove that equality in fact holds in the second inequality.

1991 India Regional Mathematical Olympiad, 2

Tags: inequalities
If $a,b,c,d$ be any four positive real numbers, then prove that \[ \frac{a}{b} + \frac{b}{c} + \frac{c}{d} + \frac{d}{a} \geq 4. \]

2006 Bulgaria Team Selection Test, 2

Prove that if $a,b,c>0,$ then \[ \frac{ab}{3a+4b+5c}+\frac{bc}{3b+4c+5a}+\frac{ca}{3c+4a+5b}\le \frac{a+b+c}{12}. \] [i] Nikolai Nikolov[/i]

2009 Jozsef Wildt International Math Competition, W. 1

Tags: inequalities
Let $a$, $b$, $c$ be positive real numbers such that $a + b + c = 1$. Prove that $$\sqrt[3]{\left (\frac{1+a}{b+c}\right )^{\frac{1-a}{bc}}\left (\frac{1+b}{c+a}\right )^{\frac{1-b}{ca}}\left (\frac{1+c}{a+b}\right )^{\frac{1-c}{ab}}} \geq 64 $$

2007 Mongolian Mathematical Olympiad, Problem 4

Let $ a,b,c>0$. Prove that $ \frac{a}{b}\plus{}\frac{b}{c}\plus{}\frac{c}{a}\geq 3\sqrt{\frac{a^2\plus{}b^2\plus{}c^2}{ab\plus{}bc\plus{}ca}}$

2000 Belarus Team Selection Test, 3.2

(a) Prove that $\{n\sqrt3\} >\frac{1}{n\sqrt3}$ for any positive integer $n$. (b) Is there a constant $c > 1$ such that $\{n\sqrt3\} >\frac{c}{n\sqrt3}$ for all $n \in N$?

2003 All-Russian Olympiad, 3

A tree with $n\geq 2$ vertices is given. (A tree is a connected graph without cycles.) The vertices of the tree have real numbers $x_1,x_2,\dots,x_n$ associated with them. Each edge is associated with the product of the two numbers corresponding to the vertices it connects. Let $S$ be a sum of number across all edges. Prove that \[\sqrt{n-1}\left(x_1^2+x_2^2+\dots+x_n^2\right)\geq 2S.\] (Author: V. Dolnikov)

2005 Nordic, 2

Let $a,b,c$ be positive real numbers. Prove that \[\frac{2a^2}{b+c} + \frac{2b^2}{c+a} + \frac{2c^2}{a+b} \geq a+b+c\](this is, of course, a joke!) [b]EDITED with exponent 2 over c[/b]

2015 Thailand Mathematical Olympiad, 2

Let $a, b, c$ be positive reals with $abc = 1$. Prove the inequality $$\frac{a^5}{a^3 + 1}+\frac{b^5}{b^3 + 1}+\frac{c^5}{c^3 + 1} \ge \frac32$$ and determine all values of a, b, c for which equality is attained

2005 USAMO, 6

For $m$ a positive integer, let $s(m)$ be the sum of the digits of $m$. For $n\ge 2$, let $f(n)$ be the minimal $k$ for which there exists a set $S$ of $n$ positive integers such that $s\left(\sum_{x\in X} x\right)=k$ for any nonempty subset $X\subset S$. Prove that there are constants $0<C_1<C_2$ with \[C_1 \log_{10} n \le f(n) \le C_2 \log_{10} n.\]