This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2013 VTRMC, Problem 5

Tags: inequalities
Prove that $$\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}} \leq\frac{3\sqrt{3}}{2}$$ for any positive real numbers $x, y,z$ such that $x+y+z = xyz.$ [url=https://artofproblemsolving.com/community/c7h236610p10925499]2008 VTRMC #1[/url] [url=http://www.math.vt.edu/people/plinnell/Vtregional/solutions.pdf]here[/url]

2008 Balkan MO, 4

Let $ c$ be a positive integer. The sequence $ a_1,a_2,\ldots$ is defined as follows $ a_1\equal{}c$, $ a_{n\plus{}1}\equal{}a_n^2\plus{}a_n\plus{}c^3$ for all positive integers $ n$. Find all $ c$ so that there are integers $ k\ge1$ and $ m\ge2$ so that $ a_k^2\plus{}c^3$ is the $ m$th power of some integer.

2001 Romania Team Selection Test, 3

Tags: inequalities
The sides of a triangle have lengths $a,b,c$. Prove that: \begin{align*}(-a+b+c)(a-b+c)\, +\, & (a-b+c)(a+b-c)+(a+b-c)(-a+b+c)\\ &\le\sqrt{abc}(\sqrt{a}+\sqrt{b}+\sqrt{c})\end{align*}

2013 Argentina National Olympiad, 4

Tags: inequalities
Let $x\geq 5, y\geq 6, z\geq 7$ such that $x^2+y^2+z^2\geq 125$. Find the minimum value of $x+y+z$.

2014 Contests, 2

Tags: inequalities
Given positive reals $a,b,c,p,q$ satisfying $abc=1$ and $p \geq q$, prove that \[ p \left(a^2+b^2+c^2\right) + q\left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \geq (p+q) (a+b+c). \][i]Proposed by AJ Dennis[/i]

2013 Romania National Olympiad, 3

A function \[\text{f:(0,}\infty \text{) }\to \text{(0,}\infty \text{)}\] is called contract if, for every numbers $x,y\in \text{(0,}\infty \text{)}$ we have, $\underset{n\to \infty }{\mathop{\lim }}\,\left( {{f}^{n}}\left( x \right)-{{f}^{n}}\left( y \right) \right)=0$ where ${{f}^{n}}=\underbrace{f\circ f\circ ...\circ f}_{n\ f\text{'s}}$ a) Consider \[f:\text{(0,}\infty \text{) }\to \text{(0,}\infty \text{)}\] a function contract, continue with the property that has a fixed point, that existing ${{x}_{0}}\in \text{(0,}\infty \text{) }$ there so that $f\left( {{x}_{0}} \right)={{x}_{0}}.$ Show that $f\left( x \right)>x,$ for every $x\in \text{(0,}{{x}_{0}}\text{)}\,$ and $f\left( x \right)<x$, for every $x\in \text{(}{{x}_{0}}\text{,}\infty \text{)}\,$. b) Show that the given function \[f\text{:(0,}\infty \text{) }\to \text{(0,}\infty \text{)}\] given by $f\left( x \right)=x+\frac{1}{x}$ is contracted but has no fix number.

2010 Tournament Of Towns, 5

For each side of a given pentagon, divide its length by the total length of all other sides. Prove that the sum of all the fractions obtained is less than 2.

2004 China Girls Math Olympiad, 2

Tags: inequalities
Let $ a, b, c$ be positive reals. Find the smallest value of \[ \frac {a \plus{} 3c}{a \plus{} 2b \plus{} c} \plus{} \frac {4b}{a \plus{} b \plus{} 2c} \minus{} \frac {8c}{a \plus{} b \plus{} 3c}. \]

2014 Contests, 3

Tags: inequalities
Let $a$, $b$, $c$ and $d$ be real numbers such that no two of them are equal, \[\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}=4\] and $ac=bd$. Find the maximum possible value of \[\frac{a}{c}+\frac{b}{d}+\frac{c}{a}+\frac{d}{b}.\]

2008 Harvard-MIT Mathematics Tournament, 21

Let $ ABC$ be a triangle with $ AB \equal{} 5$, $ BC \equal{} 4$ and $ AC \equal{} 3$. Let $ \mathcal P$ and $ \mathcal Q$ be squares inside $ ABC$ with disjoint interiors such that they both have one side lying on $ AB$. Also, the two squares each have an edge lying on a common line perpendicular to $ AB$, and $ \mathcal P$ has one vertex on $ AC$ and $ \mathcal Q$ has one vertex on $ BC$. Determine the minimum value of the sum of the areas of the two squares. [asy]import olympiad; import math; import graph; unitsize(1.5cm); pair A, B, C; A = origin; B = A + 5 * right; C = (9/5, 12/5); pair X = .7 * A + .3 * B; pair Xa = X + dir(135); pair Xb = X + dir(45); pair Ya = extension(X, Xa, A, C); pair Yb = extension(X, Xb, B, C); pair Oa = (X + Ya)/2; pair Ob = (X + Yb)/2; pair Ya1 = (X.x, Ya.y); pair Ya2 = (Ya.x, X.y); pair Yb1 = (Yb.x, X.y); pair Yb2 = (X.x, Yb.y); draw(A--B--C--cycle); draw(Ya--Ya1--X--Ya2--cycle); draw(Yb--Yb1--X--Yb2--cycle); label("$A$", A, W); label("$B$", B, E); label("$C$", C, N); label("$\mathcal P$", Oa, origin); label("$\mathcal Q$", Ob, origin);[/asy]

1986 All Soviet Union Mathematical Olympiad, 436

Prove that for every natural $n$ the following inequality is valid $$|\sin 1| + |\sin 2| + |\sin (3n-1)| + |\sin 3n| > \frac{8n}{5}$$

2012 District Olympiad, 3

Let $a, b$, and $c$ be positive real numbers. Find the largest integer $n$ such that $$\frac{1}{ax + b + c} +\frac{1}{a + bx + c}+\frac{1}{a + b + cx} \ge \frac{n}{a + b + c},$$ for all $ x \in [0, 1]$ .

2003 Federal Competition For Advanced Students, Part 1, 2

Find the greatest and smallest value of $f(x, y) = y-2x$, if x, y are distinct non-negative real numbers with $\frac{x^2+y^2}{x+y}\leq 4$.

1948 Moscow Mathematical Olympiad, 154

How many different integer solutions to the inequality $|x| + |y| < 100$ are there?

1975 Czech and Slovak Olympiad III A, 2

Show that the system of equations \begin{align*} \lfloor x\rfloor^2+\lfloor y\rfloor &=0, \\ 3x+y &=2, \end{align*} has infinitely many solutions and all these solutions satisfy bounds \begin{align*} 0<\ &x <4, \\ -9\le\ &y\le 1. \end{align*}

1979 All Soviet Union Mathematical Olympiad, 278

Prove that for the arbitrary numbers $x_1, x_2, ... , x_n$ from the $[0,1]$ segment $$(x_1 + x_2 + ...+ x_n + 1)^2 \ge 4(x_1^2 + x_2^2 + ... + x_n^2)$$

2023 China Girls Math Olympiad, 3

Let $a,b,c,d \in [0,1] .$ Prove that$$\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+d}+\frac{1}{1+d+a}\leq \frac{4}{1+2\sqrt[4]{abcd}}$$

PEN G Problems, 15

Prove that for any $ p, q\in\mathbb{N}$ with $ q > 1$ the following inequality holds: \[ \left\vert\pi\minus{}\frac{p}{q}\right\vert\ge q^{\minus{}42}.\]

2008 Regional Competition For Advanced Students, 1

Tags: inequalities
Show: For all real numbers $ a,b,c$ with $ 0<a,b,c<1$ is: \[ \sqrt{a^2bc\plus{}ab^2c\plus{}abc^2}\plus{}\sqrt{(1\minus{}a)^2(1\minus{}b)(1\minus{}c)\plus{}(1\minus{}a)(1\minus{}b)^2(1\minus{}c)\plus{}(1\minus{}a)(1\minus{}b)(1\minus{}c)^2}<\sqrt{3}.\]

2016 Turkey Team Selection Test, 3

Tags: inequalities
Let $a,b,c$ be non-negative real numbers such that $a^2+b^2+c^2 \le 3$ then prove that; $$(a+b+c)(a+b+c-abc)\ge2(a^2b+b^2c+c^2a)$$

1993 French Mathematical Olympiad, Problem 5

(a) Let there be two given points $A,B$ in the plane. i. Find the triangles $MAB$ with the given area and the minimal perimeter. ii. Find the triangles $MAB$ with a given perimeter and the maximal area. (b) In a tetrahedron of volume $V$, let $a,b,c,d$ be the lengths of its four edges, no three of which are coplanar, and let $L=a+b+c+d$. Determine the maximum value of $\frac V{L^3}$.

2005 Polish MO Finals, 1

Find all triplets $(x,y,n)$ of positive integers which satisfy: \[ (x-y)^n=xy \]

2005 iTest, 6

Kathryn, for a history project on sports, chronicled the history of college football. When she mentioned that Auburn got cheated out of the NCAA Football championship in the $2004-05$ season due to the many flaws in the BCS system, her teacher just couldn’t contain her applause, and awarded an automatic A to her for the rest of the year. The lecture was so popular, in fact, that many students pressed Kathryn to record the lecture on video and sell DVDs of it. If the function for Kathryn’s profit for selling DVDs of her college football presentation is $y = -x^2 + 14x + 251$, where $y$ is Kathryn’s profit and $x$ is the price per DVD, what price (in dollars) will maximize her profit?

2015 India IMO Training Camp, 3

Prove that for any triangle $ABC$, the inequality $\displaystyle\sum_{\text{cyclic}}\cos A\le\sum_{\text{cyclic}}\sin (A/2)$ holds.

2015 Belarus Team Selection Test, 4

Prove that $(a+b+c)^5 \ge 81 (a^2+b^2+c^2)abc$ for any positive real numbers $a,b,c$ I.Gorodnin