This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2009 China Team Selection Test, 1

Let $ a > b > 1, b$ is an odd number, let $ n$ be a positive integer. If $ b^n|a^n\minus{}1,$ then $ a^b > \frac {3^n}{n}.$

1997 Vietnam National Olympiad, 2

Let n be an integer which is greater than 1, not divisible by 1997. Let $ a_m\equal{}m\plus{}\frac{mn}{1997}$ for all m=1,2,..,1996 $ b_m\equal{}m\plus{}\frac{1997m}{n}$ for all m=1,2,..,n-1 We arrange the terms of two sequence $ (a_i), (b_j)$ in the ascending order to form a new sequence $ c_1\le c_2\le ...\le c_{1995\plus{}n}$ Prove that $ c_{k\plus{}1}\minus{}c_k<2$ for all k=1,2,...,1994+n

2003 Junior Balkan MO, 4

Let $x, y, z > -1$. Prove that \[ \frac{1+x^2}{1+y+z^2} + \frac{1+y^2}{1+z+x^2} + \frac{1+z^2}{1+x+y^2} \geq 2. \] [i]Laurentiu Panaitopol[/i]

2013 Saudi Arabia IMO TST, 1

Tags: inequalities , algebra , min , max
Find the maximum and the minimum values of $S = (1 - x_1)(1 -y_1) + (1 - x_2)(1 - y_2)$ for real numbers $x_1, x_2, y_1,y_2$ with $x_1^2 + x_2^2 = y_1^2 + y_2^2 = 2013$.

2018 Vietnam National Olympiad, 4

On the Cartesian plane the curve $(C)$ has equation $x^2=y^3$. A line $d$ varies on the plane such that $d$ always cut $(C)$ at three distinct points with $x$-coordinates $x_1,\, x_2,\, x_3$. a. Prove that the following quantity is a constant: $$\sqrt[3]{\frac{x_1x_2}{x_3^2}}+\sqrt[3]{\frac{x_2x_3}{x_1^2}}+\sqrt[3]{\frac{x_3x_1}{x_2^2}}.$$ b. Prove the following inequality: $$\sqrt[3]{\frac{x_1^2}{x_2x_3}}+\sqrt[3]{\frac{x_2^2}{x_3x_1}}+\sqrt[3]{\frac{x_3^2}{x_3x_1}}<-\frac{15}{4}.$$

2016 Hanoi Open Mathematics Competitions, 15

Let $a, b, c$ be real numbers satisfying the condition $18ab + 9ca + 29bc = 1$. Find the minimum value of the expression $T = 42a^2 + 34b^2 + 43c^2$.

2003 China Girls Math Olympiad, 5

Let $ \{a_n\}^{\infty}_1$ be a sequence of real numbers such that $ a_1 \equal{} 2,$ and \[ a_{n\plus{}1} \equal{} a^2_n \minus{} a_n \plus{} 1, \forall n \in \mathbb{N}.\] Prove that \[ 1 \minus{} \frac{1}{2003^{2003}} < \sum^{2003}_{i\equal{}1} \frac{1}{a_i} < 1.\]

2005 Junior Balkan Team Selection Tests - Moldova, 3

Tags: inequalities
Let $a_1,a_2,...a_n$ be positive numbers. And let $s=a_1+a_2+...+a_n$,and $p=a_1*a_2*...*a_n$.Prove that $2^{n}*\sqrt{p} \leq 1+\frac{s}{1!}+\frac{s^2}{2!}+...+\frac{s^n}{n!}$

2008 Romania National Olympiad, 4

Let $ \mathcal G$ be the set of all finite groups with at least two elements. a) Prove that if $ G\in \mathcal G$, then the number of morphisms $ f: G\to G$ is at most $ \sqrt [p]{n^n}$, where $ p$ is the largest prime divisor of $ n$, and $ n$ is the number of elements in $ G$. b) Find all the groups in $ \mathcal G$ for which the inequality at point a) is an equality.

2003 Belarusian National Olympiad, 4

Tags: inequalities , algebra , sum , min
Positive numbers $a_1,a_2,...,a_n, b_1, b_2,...,b_n$ satisfy the condition $a_1+a_2+...+a_n=b_1+ b_2+...+b_n=1$. Find the smallest possible value of the sum $$\frac{a_1^2}{a_1+b_1}+\frac{a_2^2}{a_2+b_2}+...+\frac{a_n^2}{a_n+b_n}$$ (V.Kolbun)

1992 Poland - Second Round, 2

Given a natural number $ n \geq 2 $. Let $ a_1, a_2, \ldots , a_n $, $ b_1, b_2, \ldots , b_n $ be real numbers. Prove that the following conditions are equivalent: - For any real numbers $ x_1 \leq x_2 \leq \ldots \leq x_n $ holds the inequality $$\sum_{i=1}^n a_i x_i \leq \sum_{i=1}^n b_i x_i.$$ - For every natural number $ k\in \{1,2,\ldots, n-1\} $ holds the inequality $$ \sum_{i=1}^k a_i \geq \sum_{i=1}^k b_i, \ \ \text{ and } \\ \ \sum_{i=1}^n a_i = \sum_{i=1 }^n b_i.$$

1979 Chisinau City MO, 170

The numbers $a_1,a_2,...,a_n$ ( $n\ge 3$) satisfy the relations $$a_1=a_n = 0, a_{k-1}+ a_{k+1}\le 2a_k \,\,\, (k = 2, 3,..., n-1)$$ Prove that the numbers $a_1,a_2,...,a_n$ are non-negative.

1973 Spain Mathematical Olympiad, 7

The two points $P(8, 2)$ and $Q(5, 11)$ are considered in the plane. A mobile moves from $P$ to $Q$ according to a path that has to fulfill the following conditions: The moving part of $ P$ and arrives at a point on the $x$-axis, along which it travels a segment of length $1$, then it departs from this axis and goes towards a point on the $y$ axis, on which travels a segment of length $2$, separates from the $y$ axis finally and goes towards the point $Q$. Among all the possible paths, determine the one with the minimum length, thus like this same length.

1966 Vietnam National Olympiad, 1

Let $x, y$ and $z$ be nonnegative real numbers satisfying the following conditions: (1) $x + cy \le 36$,(2) $2x+ 3z \le 72$, where $c$ is a given positive number. Prove that if $c \ge 3$ then the maximum of the sum $x + y + z$ is $36$, while if $c < 3$, the maximum of the sum is $24 + \frac{36}{c}$ .

2009 Croatia Team Selection Test, 1

Tags: inequalities
Prove for all positive reals a,b,c,d: $ \frac{a\minus{}b}{b\plus{}c}\plus{}\frac{b\minus{}c}{c\plus{}d}\plus{}\frac{c\minus{}d}{d\plus{}a}\plus{}\frac{d\minus{}a}{a\plus{}b} \geq 0$

2006 Taiwan TST Round 1, 3

Every square on a $n\times n$ chessboard is colored with red, blue, or green. Each red square has at least one green square adjacent to it, each green square has at least one blue square adjacent to it, and each blue square has at least one red square adjacent to it. Let $R$ be the number of red squares. Prove that $\displaystyle \frac{n^2}{11} \le R \le \frac{2n^2}{3}$.

2021 Saudi Arabia Training Tests, 33

Call a positive integer $x$ to be [i]remote from squares and cubes [/i] if each integer $k$ satisfies both $|x - k^2| > 10^6$ and $|x - k^3| > 10^6$. Prove that there exist infinitely many positive integer $n$ such that $2^n$ is remote from squares and cubes.

2010 Today's Calculation Of Integral, 558

For a positive constant $ t$, let $ \alpha ,\ \beta$ be the roots of the quadratic equation $ x^2 \plus{} t^2x \minus{} 2t \equal{} 0$. Find the minimum value of $ \int_{ \minus{} 1}^2 \left\{\left(x \plus{} \frac {1}{\alpha ^ 2}\right)\left(x \plus{} \frac {1}{\beta ^ 2}\right) \plus{} \frac {1}{\alpha \beta}\right\}dx.$

2023 South East Mathematical Olympiad, 7

The positive integer number $S$ is called a "[i]line number[/i]". if there is a positive integer $n$ and $2n$ positive integers $a_1$, $a_2$,...,$a_n$, $b_1$,$b_2$,...,$b_n$, such that $S = \sum^n_{i=1} a_ib_i$, $\sum^n_{i=1} (a_i^2-b_1^2)=1$, and $\sum^n_{i=1} (a_i+b_i)=2023$, find: (1) The minimum value of [i]line numbers[/i]. (2)The maximum value of [i]line numbers[/i].

1999 Hungary-Israel Binational, 2

The function $ f(x,y,z)\equal{}\frac{x^2\plus{}y^2\plus{}z^2}{x\plus{}y\plus{}z}$ is defined for every $ x,y,z \in R$ whose sum is not 0. Find a point $ (x_0,y_0,z_0)$ such that $ 0 < x_0^2\plus{}y_0^2\plus{}z_0^2 < \frac{1}{1999}$ and $ 1.999 < f(x_0,y_0,z_0) < 2$.

2016 Iran Team Selection Test, 2

Let $a,b,c,d$ be positive real numbers such that $\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}+\frac{1}{d+1}=2$. Prove that $$\sum_{cyc} \sqrt{\frac{a^2+1}{2}} \geq (3.\sum_{cyc} \sqrt{a}) -8$$

2024 Korea - Final Round, P5

Tags: inequalities
A positive integer $n (\ge 4)$ is given. Let $a_1, a_2, \cdots ,a_n$ be $n$ pairwise distinct positive integers where $a_i \le n$ for all $1 \le i \le n$. Determine the maximum value of $$\sum_{i=1}^{n}{|a_i - a_{i+1} + a_{i+2} - a_{i+3}|}$$ where all indices are modulo $n$

1962 Putnam, B5

Tags: inequalities
Prove that for every integer $n$ greater than $1:$ $$\frac{3n+1}{2n+2} < \left( \frac{1}{n} \right)^{n} + \left( \frac{2}{n} \right)^{n}+ \ldots+\left( \frac{n}{n} \right)^{n} <2.$$

1992 Irish Math Olympiad, 5

If, for $k=1,2,\dots ,n$, $a_k$ and $b_k$ are positive real numbers, prove that $$\sqrt[n]{a_1a_2\cdots a_n}+\sqrt[n]{b_1b_2\cdots b_n}\le \sqrt[n]{(a_1+b_1)(a_2+b_2)\cdots (a_n+b_n)};$$ and that equality holds if, and only if, $$\frac{a_1}{b_1}=\frac{a_2}{b_2}=\cdots =\frac{a_n}{b_n}.$$

1985 Swedish Mathematical Competition, 5

In a rectangular coordinate system, $O$ is the origin and $A(a,0)$, $B(0,b)$ and $C(c,d)$ the vertices of a triangle. Prove that $AB+BC+CA \ge 2CO$.