This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

1998 Greece National Olympiad, 3

Prove that for any non-zero real numbers $a, b, c,$ \[\frac{(b+c-a)^2}{(b+c)^2+a^2} + \frac{(c+a-b)^2}{(c+a)^2+b^2} + \frac{(a+b-c)^2}{(a+b)^2+c^2} \geq \frac 35.\]

2010 All-Russian Olympiad Regional Round, 9.2

This problem is given by my teacher. :wink: [size=120]Seven skiers numbered 1,2,3,4,5,6,7 set out in turn at the starting point,each one slides the same distance at a constant speed. During this period,everyone just had two "beyond" experience.(going beyond one skier or be went beyond by another skier is called a "beyond" experience). When the race ended,we would decide the rank according to the order that skiers reached the ending. Prove that:there are two different rank at most.[/size]

1987 AIME Problems, 11

Find the largest possible value of $k$ for which $3^{11}$ is expressible as the sum of $k$ consecutive positive integers.

2013 Online Math Open Problems, 44

Suppose tetrahedron $PABC$ has volume $420$ and satisfies $AB = 13$, $BC = 14$, and $CA = 15$. The minimum possible surface area of $PABC$ can be written as $m+n\sqrt{k}$, where $m,n,k$ are positive integers and $k$ is not divisible by the square of any prime. Compute $m+n+k$. [i]Ray Li[/i]

2012 Grigore Moisil Intercounty, 2

[b]a)[/b] Prove that $$ k+\frac{1}{2}-\frac{1}{8k}<\sqrt{k^2+k}<k+\frac{1}{2}-\frac{1}{8k}+\frac{1}{16k^2} , $$ for any natural number $ k. $ [b]b)[/b] Prove that there exists four numbers $ \alpha,\beta,\gamma,\delta\in\{0,1,2,3,4,5,6,7,8,9\} $ such that $$ \left\lfloor\sum_{k=1}^{2012} \sqrt{k(k+1)\left( k^2+k+1 \right)}\right\rfloor =\underbrace{\ldots\alpha \beta\gamma\delta}_{\text{decimal form}} $$ and $ \alpha +\delta =\gamma . $

2014 Contests, 2

Define a positive number sequence sequence $\{a_n\}$ by \[a_{1}=1,(n^2+1)a^2_{n-1}=(n-1)^2a^2_{n}.\]Prove that\[\frac{1}{a^2_1}+\frac{1}{a^2_2}+\cdots +\frac{1}{a^2_n}\le 1+\sqrt{1-\frac{1}{a^2_n}} .\]

2013 Tuymaada Olympiad, 4

Prove that if $x$, $y$, $z$ are positive real numbers and $xyz = 1$ then \[\frac{x^3}{x^2+y}+\frac{y^3}{y^2+z}+\frac{z^3}{z^2+x}\geq \dfrac {3} {2}.\] [i]A. Golovanov[/i]

2019 Junior Balkan Team Selection Tests - Romania, 1

If $a, b, c$ are real numbers such that a$b + bc + ca = 0$, prove the inequality $$2(a^2 + b^2 + c^2)(a^2b^2 + b^2c^2 + c^2a^2) \ge 27a^2b^2c^2$$ When does the equality hold ? Leonard Giugiuc

2010 All-Russian Olympiad Regional Round, 11.5

The angles of the triangle $\alpha, \beta, \gamma$ satisfy the inequalities $$\sin \alpha > \cos \beta, \sin \beta > \cos \gamma, \sin \gamma > \cos \alpha. $$Prove that the trαiangle is acute-angled.

2016 India Regional Mathematical Olympiad, 2

Tags: inequalities
Let \(a,b,c\) be three distinct positive real numbers such that \(abc=1\). Prove that $$\dfrac{a^3}{(a-b)(a-c)}+\dfrac{b^3}{(b-c)(b-a)}+\dfrac{c^3}{(c-a)(c-b)} \ge 3$$

1983 Poland - Second Round, 2

There are three non-negative numbers $ a, b, c $ such that the sum of each two is not less than the remaining one. Prove that $$ \sqrt{a+b-c} + \sqrt{a-b+c} + \sqrt{-a+b+c} \leq \sqrt{a} + \sqrt{b} + \sqrt{c}.$$

2004 China National Olympiad, 2

For a given positive integer $n\ge 2$, suppose positive integers $a_i$ where $1\le i\le n$ satisfy $a_1<a_2<\ldots <a_n$ and $\sum_{i=1}^n \frac{1}{a_i}\le 1$. Prove that, for any real number $x$, the following inequality holds \[\left(\sum_{i=1}^n\frac{1}{a_i^2+x^2}\right)^2\le\frac{1}{2}\cdot\frac{1}{a_1(a_1-1)+x^2} \] [i]Li Shenghong[/i]

2024 Brazil EGMO TST, 2

Let \( n, k \geq 1 \). In a school, there are \( n \) students and \( k \) clubs. Each student participates in at least one of the clubs. One day, a school uniform was established, which could be either blue or red. Each student chose only one of these colors. Every day, the principal visited one of the clubs, forcing all the students in it to switch the colors of the uniforms they wore. Assuming that the students are distributed in clubs in such a way that any initial choice of uniforms they make, after a certain number of days, it is possible to have at most one student with one of the colors. Show that \[ n \geq 2^{n-k-1} - 1. \]

2017 Saudi Arabia IMO TST, 3

Find the greatest positive real number $M$ such that for all positive real sequence $(a_n)$ and for all real number $m < M$, it is possible to find some index $n \ge 1$ that satisfies the inequality $a_1 + a_2 + a_3 + ...+ a_n +a_{n+1} > m a_n$.

2022 Dutch IMO TST, 3

For real numbers $x$ and $y$ we define $M(x, y)$ to be the maximum of the three numbers $xy$, $(x- 1)(y - 1)$, and $x + y - 2xy$. Determine the smallest possible value of $M(x, y)$ where $x$ and $y$ range over all real numbers satisfying $0 \le x, y \le 1$.

2014 Chile National Olympiad, 1

Let $a, b,c$ real numbers that are greater than $ 0$ and less than $1$. Show that there is at least one of these three values $ab(1-c)^2$, $bc(1-a)^2$ , $ca(1- b)^2$ which is less than or equal to $\frac{1}{16}$ .

2001 Moldova National Olympiad, Problem 1

Tags: inequalities
Prove that $y\sqrt{3-2x}+x\sqrt{3-2y}\le x^2+y^2$ for any number $x,y\in\left[1,\frac32\right]$. When does equality occur?

2017 Romania Team Selection Test, P3

Tags: inequalities
Given an interger $n\geq 2$, determine the maximum value the sum $\frac{a_1}{a_2}+\frac{a_2}{a_3}+...+\frac{a_{n-1}}{a_n}$ may achieve, and the points at which the maximum is achieved, as $a_1,a_2,...a_n$ run over all positive real numers subject to $a_k\geq a_1+a_2...+a_{k-1}$, for $k=2,...n$

1970 Regional Competition For Advanced Students, 1

Tags: inequalities
Let $x,y,z$ be positive real numbers such that $x+y+z=1$ Prove that always $\left( 1+\frac1x\right)\times\left(1+\frac1y\right)\times\left(1 +\frac1z\right)\ge 64$ When does equality hold?

2010 USAMO, 3

The 2010 positive numbers $a_1, a_2, \ldots , a_{2010}$ satisfy the inequality $a_ia_j \le i+j$ for all distinct indices $i, j$. Determine, with proof, the largest possible value of the product $a_1a_2\ldots a_{2010}$.

2002 Bosnia Herzegovina Team Selection Test, 1

Tags: inequalities
Let $a,b,c$ be real numbers such that $a^2+b^2+c^2=1$. Prove that \[\frac{a^2}{1+2bc}+\frac{b^2}{1+2ca}+\frac{c^2}{1+2ab} \ge \frac35\]

2018 German National Olympiad, 4

a) Let $a,b$ and $c$ be side lengths of a triangle with perimeter $4$. Show that \[a^2+b^2+c^2+abc<8.\] b) Is there a real number $d<8$ such that for all triangles with perimeter $4$ we have \[a^2+b^2+c^2+abc<d \quad\] where $a,b$ and $c$ are the side lengths of the triangle?

1986 Tournament Of Towns, (118) 6

Given the nonincreasing sequence of non-negative numbers in which $a_1 \ge a_2 \ge a_3 \ge ... \ge a_{2n-1}\ge 0$. Prove that $a^2_1 -a^2_2 + a^2_3 - ... + a^2_{2n- l} \ge (a_1 - a_2 + a_3 - ... + a_{2n- l} )^2$ . ( L . Kurlyandchik , Leningrad )

1982 Bulgaria National Olympiad, Problem 1

Find all pairs of natural numbers $(n,k)$ for which $(n+1)^{k}-1 = n!$.

2000 Croatia National Olympiad, Problem 3

Let $n\ge3$ positive integers $a_1,\ldots,a_n$ be written on a circle so that each of them divides the sum of its two neighbors. Let us denote $$S_n=\frac{a_n+a_2}{a_1}+\frac{a_1+a_3}{a_2}+\ldots+\frac{a_{n-2}+a_n}{a_{n-1}}+\ldots+\frac{a_{n-1}+a_1}{a_n}.$$Determine the minimum and maximum values of $S_n$.