This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2006 Federal Competition For Advanced Students, Part 2, 2

Tags: inequalities
Let $ a,b,c$ be positive real numbers. Show that $ 3(a \plus{} b \plus{} c) \ge 8 \sqrt [3]{abc} \plus{} \sqrt [3]{\frac {a^3 \plus{} b^3 \plus{} c^3}{3} }.$

1983 Dutch Mathematical Olympiad, 2

Prove that if $ n$ is an odd positive integer, then the last two digits of $ 2^{2n}(2^{2n\plus{}1}\minus{}1)$ in base $ 10$ are $ 28$.

2007 Iran MO (3rd Round), 3

Tags: inequalities
Find the largest real $ T$ such that for each non-negative real numbers $ a,b,c,d,e$ such that $ a\plus{}b\equal{}c\plus{}d\plus{}e$: \[ \sqrt{a^{2}\plus{}b^{2}\plus{}c^{2}\plus{}d^{2}\plus{}e^{2}}\geq T(\sqrt a\plus{}\sqrt b\plus{}\sqrt c\plus{}\sqrt d\plus{}\sqrt e)^{2}\]

2009 IMO Shortlist, 5

Let $f$ be any function that maps the set of real numbers into the set of real numbers. Prove that there exist real numbers $x$ and $y$ such that \[f\left(x-f(y)\right)>yf(x)+x\] [i]Proposed by Igor Voronovich, Belarus[/i]

VI Soros Olympiad 1999 - 2000 (Russia), 11.5

Let $ n \ge 2$ and $x_1$, $x_2$, $...$, $x_n$ be real numbers from the segment $[1,\sqrt2]$. Prove that holds the inequality $$\frac{\sqrt{x_1^2-1}}{x_2}+\frac{\sqrt{x_2^2-1}}{x_3}+...+\frac{\sqrt{x_n^2-1}}{x_1} \le \frac{\sqrt2}{2} n.$$

2014 HMNT, 8

Consider the parabola consisting of the points $(x, y)$ in the real plane satisfying $$(y + x) = (y - x)^2 + 3(y - x) + 3.$$ Find the minimum possible value of $y$.

2000 German National Olympiad, 2

For an integer $n \ge 2$, find all real numbers $x$ for which the polynomial $f(x) = (x-1)^4 +(x-2)^4 +...+(x-n)^4$ takes its minimum value.

1966 IMO Shortlist, 2

Given $n$ positive real numbers $a_1, a_2, \ldots , a_n$ such that $a_1a_2 \cdots a_n = 1$, prove that \[(1 + a_1)(1 + a_2) \cdots (1 + a_n) \geq 2^n.\]

2004 Moldova Team Selection Test, 7

Let $ABC$ be a triangle, let $O$ be its circumcenter, and let $H$ be its orthocenter. Let $P$ be a point on the segment $OH$. Prove that $6r\leq PA+PB+PC\leq 3R$, where $r$ is the inradius and $R$ the circumradius of triangle $ABC$. [b]Moderator edit:[/b] This is true only if the point $P$ lies inside the triangle $ABC$. (Of course, this is always fulfilled if triangle $ABC$ is acute-angled, since in this case the segment $OH$ completely lies inside the triangle $ABC$; but if triangle $ABC$ is obtuse-angled, then the condition about $P$ lying inside the triangle $ABC$ is really necessary.)

2000 IMC, 4

Let $OABC$ be a tetrahedon with $\angle BOC=\alpha,\angle COA =\beta$ and $\angle AOB =\gamma$. The angle between the faces $OAB$ and $OAC$ is $\sigma$ and the angle between the faces $OAB$ and $OBC$ is $\rho$. Show that $\gamma > \beta \cos\sigma + \alpha \cos\rho$.

2010 ELMO Shortlist, 6

Tags: inequalities
For all positive real numbers $a,b,c$, prove that \[\sqrt{\frac{a^4 + 2b^2c^2}{a^2+2bc}} + \sqrt{\frac{b^4+2c^2a^2}{b^2+2ca}} + \sqrt{\frac{c^4 + 2a^2b^2}{c^2 + 2ab}} \geq a + b + c.\] [i]In-Sung Na.[/i]

2019 Kosovo Team Selection Test, 5

$a,b,c,d$ are fixed positive real numbers. Find the maximum value of the function $f: \mathbb{R^{+}}_{0} \rightarrow \mathbb{R}$ $f(x)=\frac{a+bx}{b+cx}+\frac{b+cx}{c+dx}+\frac{c+dx}{d+ax}+\frac{d+ax}{a+bx}, x \geq 0$

1983 IMO Longlists, 72

Prove that for all $x_1, x_2,\ldots , x_n \in \mathbb R$ the following inequality holds: \[\sum_{n \geq i >j \geq 1} \cos^2(x_i - x_j ) \geq \frac{n(n-2)}{4}\]

2010 Cuba MO, 4

Prove that for all positive real numbers $x, y$ holds the inequality $$x^4 + y^3 + x^2 + y + 1 > \frac92 xy.$$

2020 IMO, 2

The real numbers $a, b, c, d$ are such that $a\geq b\geq c\geq d>0$ and $a+b+c+d=1$. Prove that \[(a+2b+3c+4d)a^ab^bc^cd^d<1\] [i]Proposed by Stijn Cambie, Belgium[/i]

Oliforum Contest I 2008, 1

Tags: inequalities
Let $ a,b,c$ positive reals such that $ ab \plus{} bc \plus{} ca \equal{} 3$, show that: $ \displaystyle a^2 \plus{} b^2 \plus{} c^2 \plus{} 3 \ge \frac {a(3 \plus{} bc)^2}{(c \plus{} b)(b^2 \plus{} 3)} \plus{} \frac {b(3 \plus{} ca)^2}{(a \plus{} c)(c^2 \plus{} 3)} \plus{} \frac {c(3 \plus{} ab)^2}{(b \plus{} a)(a^2 \plus{} 3)}$ ([i]Anass BenTaleb, Ali Ben Bari High School - Taza,Morocco[/i])

2023 Romania EGMO TST, P3

Let $D{}$ be a point inside the triangle $ABC$. Let $E{}$ and $F{}$ be the projections of $D{}$ onto $AB$ and $AC$, respectively. The lines $BD$ and $CD$ intersect the circumcircle of $ABC$ the second time at $M{}$ and $N{}$, respectively. Prove that \[\frac{EF}{MN}\geqslant \frac{r}{R},\]where $r{}$ and $R{}$ are the inradius and circumradius of $ABC$, respectively.

2006 Rioplatense Mathematical Olympiad, Level 3, 1

(a) For each integer $k\ge 3$, find a positive integer $n$ that can be represented as the sum of exactly $k$ mutually distinct positive divisors of $n$. (b) Suppose that $n$ can be expressed as the sum of exactly $k$ mutually distinct positive divisors of $n$ for some $k\ge 3$. Let $p$ be the smallest prime divisor of $n$. Show that \[\frac1p+\frac1{p+1}+\cdots+\frac{1}{p+k-1}\ge1.\]

1989 Vietnam National Olympiad, 2

The sequence of polynomials $ \left\{P_n(x)\right\}_{n\equal{}0}^{\plus{}\infty}$ is defined inductively by $ P_0(x) \equal{} 0$ and $ P_{n\plus{}1}(x) \equal{} P_n(x)\plus{}\frac{x \minus{} P_n^2(x)}{2}$. Prove that for any $ x \in [0, 1]$ and any natural number $ n$ it holds that $ 0\le\sqrt x\minus{} P_n(x)\le\frac{2}{n \plus{} 1}$.

2017 Balkan MO Shortlist, A1

Problem Shortlist BMO 2017 Let $ a $,$ b$,$ c$, be positive real numbers such that $abc= 1 $. Prove that $$\frac{1}{a^{5}+b^{5}+c^{2}}+\frac{1}{b^{5}+c^{5}+a^{2}}+\frac{1}{c^{5}+b^{5}+b^{2}}\leq 1 . $$

2011 Morocco National Olympiad, 1

Tags: inequalities
Let $a$ and $b$ be two positive real numbers such that $a+b=ab$. Prove that $\frac{a}{b^{2}+4}+\frac{b}{a^{2}+4}\geq \frac{1}{2}$.

2002 China Team Selection Test, 1

Tags: inequalities
Given $ n \geq 3$, $ n$ is a integer. Prove that: \[ (2^n \minus{} 2) \cdot \sqrt{2i\minus{}1} \geq \left( \sum_{j\equal{}0}^{i\minus{}1}C_n^j \plus{} C_{n\minus{}1}^{i\minus{}1} \right) \cdot \sqrt{n}\] where if $ n$ is even, then $ \displaystyle 1 \leq i \leq \frac{n}{2}$; if $ n$ is odd, then $ \displaystyle 1 \leq i \leq \frac{n\minus{}1}{2}$.

2024 Indonesia TST, A

Given real numbers $x,y,z$ which satisfies $$|x+y+z|+|xy+yz+zx|+|xyz| \le 1$$ Show that $max\{ |x|,|y|,|z|\} \le 1$.

2023 VIASM Summer Challenge, Problem 1

Find the largest positive real number $k$ such that the inequality$$a^3+b^3+c^3-3\ge k(3-ab-bc-ca)$$holds for all positive real triples $(a;b;c)$ satisfying $a+b+c=3.$

2011 All-Russian Olympiad, 1

Two natural numbers $d$ and $d'$, where $d'>d$, are both divisors of $n$. Prove that $d'>d+\frac{d^2}{n}$.