This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2006 International Zhautykov Olympiad, 1

Solve in positive integers the equation \[ n \equal{} \varphi(n) \plus{} 402 , \] where $ \varphi(n)$ is the number of positive integers less than $ n$ having no common prime factors with $ n$.

2009 District Olympiad, 3

Tags: inequalities
[b]a)[/b] For $ a,b\ge 0 $ and $ x,y>0, $ show that: $$ \frac{a^3}{x^2} +\frac{b^3}{y^2}\ge \frac{(a+b)^3}{(x+y)^2} . $$ [b]b)[/b] For $ a,b,c\ge 0 $ and $ x,y,z>0 $ under the condition $ a+b+c=x+y+z, $ prove that: $$ \frac{a^3}{x^2} +\frac{b^3}{y^2} +\frac{c^3}{z^2} \ge a+b+c. $$

2006 China Team Selection Test, 2

Given three positive real numbers $ x$, $ y$, $ z$ such that $ x \plus{} y \plus{} z \equal{} 1$, prove that $ \frac {xy}{\sqrt {xy \plus{} yz}} \plus{} \frac {yz}{\sqrt {yz \plus{} zx}} \plus{} \frac {zx}{\sqrt {zx \plus{} xy}} \le \frac {\sqrt {2}}{2}$.

2010 Today's Calculation Of Integral, 577

Prove the following inequality for any integer $ N\geq 4$. \[ \sum_{p\equal{}4}^N \frac{p^2\plus{}2}{(p\minus{}2)^4}<5\]

1983 AMC 12/AHSME, 29

A point $P$ lies in the same plane as a given square of side $1$. Let the vertices of the square, taken counterclockwise, be $A$, $B$, $C$ and $D$. Also, let the distances from $P$ to $A$, $B$ and $C$, respectively, be $u$, $v$ and $w$. What is the greatest distance that $P$ can be from $D$ if $u^2 + v^2 = w^2$? $ \textbf{(A)}\ 1 + \sqrt{2}\qquad\textbf{(B)}\ 2\sqrt{2}\qquad\textbf{(C)}\ 2 + \sqrt{2}\qquad\textbf{(D)}\ 3\sqrt{2}\qquad\textbf{(E)}\ 3 + \sqrt{2}$

KoMaL A Problems 2022/2023, A. 852

Let $(a_i,b_i)$ be pairwise distinct pairs of positive integers for $1\le i\le n$. Prove that \[(a_1+a_2+\ldots+a_n)(b_1+b_2+\ldots+b_n)>\frac29 n^3,\] and show that the statement is sharp, i.e. for an arbitrary $c>\frac29$ it is possible that \[(a_1+a_2+\ldots+a_n)(b_1+b_2+\ldots+b_n)<cn^3.\] [i]Submitted by Péter Pál Pach, Budapest, based on an OKTV problem[/i]

2016 South East Mathematical Olympiad, 5

Let a constant $\alpha$ as $0<\alpha<1$, prove that: $(1)$ There exist a constant $C(\alpha)$ which is only depend on $\alpha$ such that for every $x\ge 0$, $\ln(1+x)\le C(\alpha)x^\alpha$. $(2)$ For every two complex numbers $z_1,z_2$, $|\ln|\frac{z_1}{z_2}||\le C(\alpha)\left(|\frac{z_1-z_2}{z_2}|^\alpha+|\frac{z_2-z_1}{z_1}|^\alpha\right)$.

2024 ISI Entrance UGB, P6

Let $x_1 , \dots , x_{2024}$ be non negative real numbers with $\displaystyle{\sum_{i=1}^{2024}}x_i = 1$. Find, with proof, the minimum and maximum possible values of the following expression \[\sum_{i=1}^{1012} x_i + \sum_{i=1013}^{2024} x_i^2 .\]

2018 Saudi Arabia IMO TST, 2

a) For integer $n \ge 3$, suppose that $0 < a_1 < a_2 < ...< a_n$ is a arithmetic sequence and $0 < b_1 < b_2 < ... < b_n$ is a geometric sequence with $a_1 = b_1, a_n = b_n$. Prove that a_k > b_k for all $k = 2,3,..., n -1$. b) Prove that for every positive integer $n \ge 3$, there exist an integer arithmetic sequence $(a_n)$ and an integer geometric sequence $(b_n)$ such that $0 < b_1 < a_1 < b_2 < a_2 < ... < b_n < a_n$.

2014 ELMO Shortlist, 5

Define a [i]beautiful number[/i] to be an integer of the form $a^n$, where $a\in\{3,4,5,6\}$ and $n$ is a positive integer. Prove that each integer greater than $2$ can be expressed as the sum of pairwise distinct beautiful numbers. [i]Proposed by Matthew Babbitt[/i]

2008 Germany Team Selection Test, 1

Tags: inequalities
Let $ a_1, a_2, \ldots, a_{100}$ be nonnegative real numbers such that $ a^2_1 \plus{} a^2_2 \plus{} \ldots \plus{} a^2_{100} \equal{} 1.$ Prove that \[ a^2_1 \cdot a_2 \plus{} a^2_2 \cdot a_3 \plus{} \ldots \plus{} a^2_{100} \cdot a_1 < \frac {12}{25}. \] [i]Author: Marcin Kuzma, Poland[/i]

2011 Hanoi Open Mathematics Competitions, 12

Tags: inequalities
Suppose that $a > 0; b > 0$ and $a + b \leq 1$. Determine the minimum value of $M=\frac{1}{ab} +\frac{1}{a^2+ab}+\frac{1}{ab+b^2}+\frac{1}{a^2+b^2}$.

1996 North Macedonia National Olympiad, 3

Prove that if $\alpha, \beta, \gamma$ are angles of a triangle, then $\frac{1}{\sin \alpha}+ \frac{1}{\sin \beta} \ge \frac{8}{ 3+2 \ cos\gamma}$ .

2016 Thailand TSTST, 4

Tags: inequalities
Let $a, b, c$ be positive reals such that $4(a+b+c)\geq\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$. Define \begin{align*} &A =\sqrt{\frac{3a}{a+2\sqrt{bc}}}+\sqrt{\frac{3b}{b+2\sqrt{ca}}}+\sqrt{\frac{3c}{c+2\sqrt{ab}}} \\ &B =\sqrt{a}+\sqrt{b}+\sqrt{c} \\ &C =\frac{a}{\sqrt{a+b}}+\frac{b}{\sqrt{b+c}}+\frac{c}{\sqrt{c+a}}. \end{align*} Prove that $$A\leq 2B\leq 4C.$$

2011 Greece Junior Math Olympiad, 4

Tags: inequalities
If $x, y, z$ are positive real numbers with sum $12$, prove that $\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+ 3 \ge \sqrt{x} +\sqrt{y }+\sqrt{z}$. When equality is valid?

2019 China Team Selection Test, 1

Given complex numbers $x,y,z$, with $|x|^2+|y|^2+|z|^2=1$. Prove that: $$|x^3+y^3+z^3-3xyz| \le 1$$

2013 China Second Round Olympiad, 3

Tags: inequalities
The integers $n>1$ is given . The positive integer $a_1,a_2,\cdots,a_n$ satisfing condition : (1) $a_1<a_2<\cdots<a_n$; (2) $\frac{a^2_1+a^2_2}{2},\frac{a^2_2+a^2_3}{2},\cdots,\frac{a^2_{n-1}+a^2_n}{2}$ are all perfect squares . Prove that :$a_n\ge 2n^2-1.$

1967 AMC 12/AHSME, 11

If the perimeter of rectangle $ABCD$ is $20$ inches, the least value of diagonal $\overline{AC}$, in inches, is: $\textbf{(A)}\ 0\qquad \textbf{(B)}\ \sqrt{50}\qquad \textbf{(C)}\ 10\qquad \textbf{(D)}\ \sqrt{200}\qquad \textbf{(E)}\ \text{none of these}$

1994 India Regional Mathematical Olympiad, 1

A leaf is torn from a paperback novel. The sum of the numbers on the remaining pages is $15000$. What are the page numbers on the torn leaf?

2011 AMC 12/AHSME, 19

At a competition with $N$ players, the number of players given elite status is equal to \[2^{1+\lfloor\log_2{(N-1)}\rfloor} - N. \] Suppose that $19$ players are given elite status. What is the sum of the two smallest possible values of $N$? $ \textbf{(A)}\ 38\qquad \textbf{(B)}\ 90 \qquad \textbf{(C)}\ 154 \qquad \textbf{(D)}\ 406 \qquad \textbf{(E)}\ 1024$

2019 Dutch BxMO TST, 3

Let $x$ and $y$ be positive real numbers. 1. Prove: if $x^3 - y^3 \ge 4x$, then $x^2 > 2y$. 2. Prove: if $x^5 - y^3 \ge 2x$, then $x^3 \ge 2y$.

1985 Traian Lălescu, 2.2

Show that if $ \left| ax^2+bx+c\right|\le 1, $ for all $ x\in [-1,1], $ then $ |a|+|b|+|c|\le 4. $

Oliforum Contest II 2009, 2

Tags: inequalities
Define $ \phi$ the positive real root of $ x^2 \minus{} x \minus{} 1$ and let $ a,b,c,d$ be positive real numbers such that $ (a \plus{} 2b)^2 \equal{} 4c^2 \plus{} 1$. Show that $ \displaystyle 2d^2 \plus{} a^2\left(\phi \minus{} \frac {1}{2}\right) \plus{} b^2\left(\frac {1}{\phi \minus{} 1} \plus{} 2\right) \plus{} 2 \ge 4(c \minus{} d) \plus{} 2\sqrt {d^2 \plus{} 2d}$ and find all cases of equality. [i](A.Naskov)[/i]

2008 Germany Team Selection Test, 3

Find all real polynomials $ f$ with $ x,y \in \mathbb{R}$ such that \[ 2 y f(x \plus{} y) \plus{} (x \minus{} y)(f(x) \plus{} f(y)) \geq 0. \]

2008 Sharygin Geometry Olympiad, 24

(I.Bogdanov, 11) Let $ h$ be the least altitude of a tetrahedron, and $ d$ the least distance between its opposite edges. For what values of $ t$ the inequality $ d>th$ is possible?