Found problems: 6530
1984 All Soviet Union Mathematical Olympiad, 372
Prove that every positive $a$ and $b$ satisfy inequality $$\frac{(a+b)^2}{2} + \frac{a+b}{4} \ge a\sqrt b + b\sqrt a$$
2006 USA Team Selection Test, 3
Find the least real number $k$ with the following property: if the real numbers $x$, $y$, and $z$ are not all positive, then \[k(x^{2}-x+1)(y^{2}-y+1)(z^{2}-z+1)\geq (xyz)^{2}-xyz+1.\]
1983 Czech and Slovak Olympiad III A, 2
Given a triangle $ABC$, prove that for every inner point $P$ of the side $AB$ the inequality $$PC\cdot AB<PA\cdot BC+PB\cdot AC$$ holds.
2006 IMO Shortlist, 8
Let $ABCD$ be a convex quadrilateral. A circle passing through the points $A$ and $D$ and a circle passing through the points $B$ and $C$ are externally tangent at a point $P$ inside the quadrilateral. Suppose that \[\angle{PAB}+\angle{PDC}\leq 90^\circ\qquad\text{and}\qquad\angle{PBA}+\angle{PCD}\leq 90^\circ.\] Prove that $AB+CD \geq BC+AD$.
[i]Proposed by Waldemar Pompe, Poland[/i]
2018 Bulgaria National Olympiad, 3.
Prove that \[ \left(\frac{6}{5}\right)^{\sqrt{3}}>\left(\frac{5}{4}\right)^{\sqrt{2}}. \]
1972 IMO Longlists, 25
We consider $n$ real variables $x_i(1 \le i \le n)$, where $n$ is an integer and $n \ge 2$. The product of these variables will be denoted by $p$, their sum by $s$, and the sum of their squares by $S$. Furthermore, let $\alpha$ be a positive constant. We now study the inequality $ps \le S\alpha$. Prove that it holds for every $n$-tuple $(x_i)$ if and only if $\alpha=\frac{n+1}{2}$
1993 Balkan MO, 2
A positive integer given in decimal representation $\overline{ a_na_{n-1} \ldots a_1a_0 }$ is called [i]monotone[/i] if $a_n\leq a_{n-1} \leq \cdots \leq a_0$. Determine the number of monotone positive integers with at most 1993 digits.
2014 Singapore Senior Math Olympiad, 7
Find the largest number among the following numbers:
$ \textbf{(A) }\tan47^{\circ}+\cos47^{\circ}\qquad\textbf{(B) }\cot 47^{\circ}+\sqrt{2}\sin 47^{\circ}\qquad\textbf{(C) }\sqrt{2}\cos47^{\circ}+\sin47^{\circ}\qquad\textbf{(D) }\tan47^{\circ}+\cot47^{\circ}\qquad\textbf{(E) }\cos47^{\circ}+\sqrt{2}\sin47^{\circ} $
1983 AMC 12/AHSME, 21
Find the smallest positive number from the numbers below
$\text{(A)} \ 10-3\sqrt{11} \qquad \text{(B)} \ 3\sqrt{11}-10 \qquad \text{(C)} \ 18-5\sqrt{13} \qquad \text{(D)} \ 51-10\sqrt{26} \qquad \text{(E)} \ 10\sqrt{26}-51$
2009 Postal Coaching, 6
Find all pairs $(m, n)$ of positive integers $m$ and $n$ for which one has $$\sqrt{ m^2 - 4} < 2\sqrt{n} - m < \sqrt{ m^2 - 2}$$
2018 Cyprus IMO TST, 4
Let $\Lambda= \{1, 2, \ldots, 2v-1,2v\}$ and $P=\{\alpha_1, \alpha_2, \ldots, \alpha_{2v-1}, \alpha_{2v}\}$ be a permutation of the elements of $\Lambda$.
(a) Prove that
$$\sum_{i=1}^v \alpha_{2i-1}\alpha_{2i} \leq \sum_{i=1}^v (2i-1)2i.$$
(b) Determine the largest positive integer $m$ such that we can partition the $m\times m$ square into $7$ rectangles for which every pair of them has no common interior points and their lengths and widths form the following sequence:
$$1,2,3,4,5,6,7,8,9,10,11,12,13,14.$$
2021 JHMT HS, 3
Let $(x,y)$ be the coordinates of a point chosen uniformly at random within the unit square with vertices at $(0,0), (0,1), (1,0),$ and $(1,1).$ The probability that $|x - \tfrac{1}{2}| + |y - \tfrac{1}{2}| < \tfrac{1}{2}$ is $\tfrac{p}{q},$ where $p$ and $q$ are relatively prime integers. Find $p + q.$
2007 Bulgaria Team Selection Test, 3
Let $n\geq 2$ is positive integer. Find the best constant $C(n)$ such that \[\sum_{i=1}^{n}x_{i}\geq C(n)\sum_{1\leq j<i\leq n}(2x_{i}x_{j}+\sqrt{x_{i}x_{j}})\] is true for all real numbers $x_{i}\in(0,1),i=1,...,n$ for which $(1-x_{i})(1-x_{j})\geq\frac{1}{4},1\leq j<i \leq n.$
2011 Olympic Revenge, 5
Let $n \in \mathbb{N}$ and $z \in \mathbb{C}^{*}$. Prove that
$\left | n\textrm{e}^{z} - \sum_{j=1}^{n}\left (1+\frac{z}{j^2}\right )^{j^2}\right | < \frac{1}{3}\textrm{e}^{|z|}\left (\frac{\pi|z|}{2}\right)^2$.
2014 Contests, 3
Let $a,b$ be natural numbers with $ab>2$. Suppose that the sum of their greatest common divisor and least common multiple is divisble by $a+b$. Prove that the quotient is at most $\frac{a+b}{4}$. When is this quotient exactly equal to $\frac{a+b}{4}$
1967 Poland - Second Round, 1
Real numbers $a_1,a_2,...,a_n$ ($n \ge 3$) satisfy the conditions $a_1 = a_n = 0$ and $$a_{k-1}+a_{k+1} \ge 2a_k$$ for $k = 2$,$3$$,...,$$n -1$. Prove that none of the numbers $a_1$,$...$,$a_n$ is positive.
2009 Singapore Junior Math Olympiad, 5
Let $a, b$ be positive real numbers satisfying $a + b = 1$. Show that if $x_1,x_2,...,x_5$ are positive real numbers such that $x_1x_2...x_5 = 1$, then $(ax_1+b)(ax_2+b)...(ax_5+b)>1$
2012 Junior Balkan Team Selection Tests - Moldova, 2
Let $ a,b,c,d$ be positive real numbers and $cd=1$. Prove that there exists a positive integer $n$ such that
$ab\leq n^2\leq (a+c)(b+d)$
2000 Hungary-Israel Binational, 3
Let $k$ and $l$ be two given positive integers and $a_{ij}(1 \leq i \leq k, 1 \leq j \leq l)$ be $kl$ positive integers. Show that if $q \geq p > 0$, then \[(\sum_{j=1}^{l}(\sum_{i=1}^{k}a_{ij}^{p})^{q/p})^{1/q}\leq (\sum_{i=1}^{k}(\sum_{j=1}^{l}a_{ij}^{q})^{p/q})^{1/p}.\]
2014 Putnam, 4
Show that for each positive integer $n,$ all the roots of the polynomial \[\sum_{k=0}^n 2^{k(n-k)}x^k\] are real numbers.
2009 Baltic Way, 4
Determine all integers $ n>1$ for which the inequality \[ x_1^2\plus{}x_2^2\plus{}\ldots\plus{}x_n^2\ge(x_1\plus{}x_2\plus{}\ldots\plus{}x_{n\minus{}1})x_n\] holds for all real $ x_1,x_2,\ldots,x_n$.
1994 Irish Math Olympiad, 5
Let $ f(n)$ be defined for $ n \in \mathbb{N}$ by $ f(1)\equal{}2$ and $ f(n\plus{}1)\equal{}f(n)^2\minus{}f(n)\plus{}1$ for $ n \ge 1$. Prove that for all $ n >1:$
$ 1\minus{}\frac{1}{2^{2^{n\minus{}1}}}<\frac{1}{f(1)}\plus{}\frac{1}{f(2)}\plus{}...\plus{}\frac{1}{f(n)}<1\minus{}\frac{1}{2^{2^n}}$
2014 Contests, 3
Find all polynomials $P(x)$ with real coefficients that satisfy \[P(x\sqrt{2})=P(x+\sqrt{1-x^2})\]for all real $x$ with $|x|\le 1$.
2010 Puerto Rico Team Selection Test, 6
Find all values of $ r$ such that the inequality $$r (ab + bc + ca) + (3- r) \left( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right) \ge 9$$
is true for $a,b,c$ arbitrary positive reals
2015 All-Russian Olympiad, 6
Let a,b,c,d be real numbers satisfying $|a|,|b|,|c|,|d|>1$ and $abc+abd+acd+bcd+a+b+c+d=0$. Prove that $\frac {1} {a-1}+\frac {1} {b-1}+ \frac {1} {c-1}+ \frac {1} {d-1} >0$