This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

1957 AMC 12/AHSME, 29

Tags: inequalities
The relation $ x^2(x^2 \minus{} 1)\ge 0$ is true only for: $ \textbf{(A)}\ x \ge 1\qquad \textbf{(B)}\ \minus{} 1 \le x \le 1\qquad \textbf{(C)}\ x \equal{} 0,\, x \equal{} 1,\, x \equal{} \minus{} 1\qquad \\\textbf{(D)}\ x \equal{} 0,\, x \le \minus{} 1,\, x \ge 1\qquad \textbf{(E)}\ x \ge 0$

2001 Mongolian Mathematical Olympiad, Problem 2

For positive real numbers $b_1,b_2,\ldots,b_n$ define $$a_1=\frac{b_1}{b_1+b_2+\ldots+b_n}\enspace\text{ and }\enspace a_k=\frac{b_1+\ldots+b_k}{b_1+\ldots+b_{k-1}}\text{ for }k>1.$$Prove that $a_1+a_2+\ldots+a_n\le\frac1{a_1}+\frac1{a_2}+\ldots+\frac1{a_n}$

2003 Rioplatense Mathematical Olympiad, Level 3, 1

Tags: inequalities
Let $x$, $y$, and $z$ be positive real numbers satisfying $x^2+y^2+z^2=1$. Prove that \[x^2yz+xy^2z+xyz^2\le\frac{1}{3}.\]

2013 Math Prize For Girls Problems, 20

Let $a_0$, $a_1$, $a_2$, $\dots$ be an infinite sequence of real numbers such that $a_0 = \frac{4}{5}$ and \[ a_{n} = 2 a_{n-1}^2 - 1 \] for every positive integer $n$. Let $c$ be the smallest number such that for every positive integer $n$, the product of the first $n$ terms satisfies the inequality \[ a_0 a_1 \dots a_{n - 1} \le \frac{c}{2^n}. \] What is the value of $100c$, rounded to the nearest integer?

1992 IMO Longlists, 70

Let two circles $A$ and $B$ with unequal radii $r$ and $R$, respectively, be tangent internally at the point $A_0$. If there exists a sequence of distinct circles $(C_n)$ such that each circle is tangent to both $A$ and $B$, and each circle $C_{n+1}$ touches circle $C_{n}$ at the point $A_n$, prove that \[\sum_{n=1}^{\infty} |A_{n+1}A_n| < \frac{4 \pi Rr}{R+r}.\]

1995 Irish Math Olympiad, 3

Points $ A,X,D$ lie on a line in this order, point $ B$ is on the plane such that $ \angle ABX>120^{\circ}$, and point $ C$ is on the segment $ BX$. Prove the inequality: $ 2AD \ge \sqrt{3} (AB\plus{}BC\plus{}CD)$.

2009 Serbia Team Selection Test, 1

Let $ \alpha$ and $ \beta$ be the angles of a non-isosceles triangle $ ABC$ at points $ A$ and $ B$, respectively. Let the bisectors of these angles intersect opposing sides of the triangle in $ D$ and $ E$, respectively. Prove that the acute angle between the lines $ DE$ and $ AB$ isn't greater than $ \frac{|\alpha\minus{}\beta|}3$.

2010 Tournament Of Towns, 3

Tags: inequalities
For each side of a given polygon, divide its length by the total length of all other sides. Prove that the sum of all the fractions obtained is less than $2$.

2003 China Western Mathematical Olympiad, 2

Let $ a_1, a_2, \ldots, a_{2n}$ be $ 2n$ real numbers satisfying the condition $ \sum_{i \equal{} 1}^{2n \minus{} 1} (a_{i \plus{} 1} \minus{} a_i)^2 \equal{} 1$. Find the greatest possible value of $ (a_{n \plus{} 1} \plus{} a_{n \plus{} 2} \plus{} \ldots \plus{} a_{2n}) \minus{} (a_1 \plus{} a_2 \plus{} \ldots \plus{} a_n)$.

2023 Romania Team Selection Test, P3

Let $n \geqslant 3$ be an integer, and let $x_1,x_2,\ldots,x_n$ be real numbers in the interval $[0,1]$. Let $s=x_1+x_2+\ldots+x_n$, and assume that $s \geqslant 3$. Prove that there exist integers $i$ and $j$ with $1 \leqslant i<j \leqslant n$ such that \[2^{j-i}x_ix_j>2^{s-3}.\]

1998 Irish Math Olympiad, 1

Prove that if $ x \not\equal{} 0$ is a real number, then: $ x^8\minus{}x^5\minus{}\frac{1}{x}\plus{}\frac{1}{x^4} \ge 0$.

India EGMO 2022 TST, 1

Let $n\ge 3$ be an integer, and suppose $x_1,x_2,\cdots ,x_n$ are positive real numbers such that $x_1+x_2+\cdots +x_n=1.$ Prove that $$x_1^{1-x_2}+x_2^{1-x_3}\cdots+x_{n-1}^{1-x_n}+x_n^{1-x_1}<2.$$ [i] ~Sutanay Bhattacharya[/i]

2016 Postal Coaching, 1

The set of all positive real numbers is partitioned into three mutually disjoint non-empty subsets: $\mathbb R^+ = A \cup B\cup C$ and $A \cap B = B \cap C = C \cap A = \emptyset$ whereas none of $A, B, C$ is empty. [list=a][*] Show that one can choose $a \in A, b \in B$ and $c \in C$ such that $a,b, c$ are the sides of a triangle. [*] Is it always possible to choose three numbers from three different sets $A,B,C$ such that these three numbers are the sides of a right-angled triangle?[/list]

2014 Contests, 2

Tags: inequalities
Let $a,b\in\mathbb{R}_+$ such that $a+b=1$. Find the minimum value of the following expression: \[E(a,b)=3\sqrt{1+2a^2}+2\sqrt{40+9b^2}.\]

2003 IMC, 2

Evaluate $\lim_{x\rightarrow 0^+}\int^{2x}_x\frac{\sin^m(t)}{t^n}dt$. ($m,n\in\mathbb{N}$)

2021 Indonesia TST, A

Let $a$ and $b$ be real numbers. It is known that the graph of the parabola $y =ax^2 +b$ cuts the graph of the curve $y = x+1/x$ in exactly three points. Prove that $3ab < 1$.

2021 Baltic Way, 2

Let $a$, $b$, $c$ be the side lengths of a triangle. Prove that $$ \sqrt[3]{(a^2+bc)(b^2+ca)(c^2+ab)} > \frac{a^2+b^2+c^2}{2}. $$

2004 USAMO, 5

Let $a, b, c > 0$. Prove that $(a^5 - a^2 + 3)(b^5 - b^2 + 3)(c^5 - c^2 + 3) \geq (a + b + c)^3$.

2019 Jozsef Wildt International Math Competition, W. 58

In the $[ABCD]$ tetrahedron having all the faces acute angled triangles, is denoted by $r_X$, $R_X$ the radius lengths of the circle inscribed and circumscribed respectively on the face opposite to the $X \in \{A,B,C,D\}$ peak, and with $R$ the length of the radius of the sphere circumscribed to the tetrahedron. Show that inequality occurs$$8R^2 \geq (r_A + R_A)^2 + (r_B + R_B)^2 + (r_C + R_C)^2 + (r_D + R_D)^2$$

2020 India National Olympiad, 4

Let $n \geqslant 2$ be an integer and let $1<a_1 \le a_2 \le \dots \le a_n$ be $n$ real numbers such that $a_1+a_2+\dots+a_n=2n$. Prove that$$a_1a_2\dots a_{n-1}+a_1a_2\dots a_{n-2}+\dots+a_1a_2+a_1+2 \leqslant a_1a_2\dots a_n.$$ [i]Proposed by Kapil Pause[/i]

1992 China Team Selection Test, 2

Let $n \geq 2, n \in \mathbb{N},$ find the least positive real number $\lambda$ such that for arbitrary $a_i \in \mathbb{R}$ with $i = 1, 2, \ldots, n$ and $b_i \in \left[0, \frac{1}{2}\right]$ with $i = 1, 2, \ldots, n$, the following holds: \[\sum^n_{i=1} a_i = \sum^n_{i=1} b_i = 1 \Rightarrow \prod^n_{i=1} a_i \leq \lambda \sum^n_{i=1} a_i b_i.\]

1997 India Regional Mathematical Olympiad, 4

In a quadrilateral $ABCD$, it is given that $AB$ is parallel to $CD$ and the diagonals $AC$ and $BD$ are perpendicular to each other. Show that (a) $AD \cdot BC \geq AB \cdot CD$ (b) $AD + BC \geq AB + CD.$

2025 Israel National Olympiad (Gillis), P6

Tags: inequalities
Let $a$, $b$ and $c$ be non-negative numbers such that $ab+ac+bc+abc=4.$ . Prove that: $$\sqrt{\frac{ab+ac+1}{a+2}}+\sqrt{\frac{ab+bc+1}{b+2}}+\sqrt{\frac{ac+bc+1}{c+2}}\leq3.$$ [hide="PS"]Dedicated to dear KhuongTrang :-D [/hide]

MathLinks Contest 3rd, 3

Tags: inequalities
Let $n \ge 3$ be an integer. Find the minimal value of the real number $k_n$ such that for all positive numbers $x_1, x_2, ..., x_n$ with product $1$, we have $$\frac{1}{\sqrt{1 + k_nx_1}}+\frac{1}{\sqrt{1 + k_nx_2}}+ ... + \frac{1}{\sqrt{1 + k_nx_n}} \le n - 1.$$

2006 IberoAmerican, 2

Tags: inequalities
For n real numbers $a_{1},\, a_{2},\, \ldots\, , a_{n},$ let $d$ denote the difference between the greatest and smallest of them and $S = \sum_{i<j}\left |a_i-a_j \right|.$ Prove that \[(n-1)d\le S\le\frac{n^{2}}{4}d\] and find when each equality holds.