Found problems: 6530
2010 Bosnia Herzegovina Team Selection Test, 5
Let $a$,$b$ and $c$ be sides of a triangle such that $a+b+c\le2$. Prove that
$-3<{\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}-\frac{a^3}{c}-\frac{b^3}{a}-\frac{c^3}{b}}<3$
2011 Balkan MO Shortlist, C2
Let $ABCDEF$ be a convex hexagon of area $1$, whose opposite sides are parallel. The lines $AB$, $CD$ and $EF$ meet in pairs to determine the vertices of a triangle. Similarly, the lines $BC$, $DE$ and $FA$ meet in pairs to determine the vertices of another triangle. Show that the area of at least one of these two triangles is at least $3/2$.
1971 IMO Longlists, 18
Let $a_1, a_2, \ldots, a_n$ be positive numbers, $m_g = \sqrt[n]{(a_1a_2 \cdots a_n)}$ their geometric mean, and $m_a = \frac{(a_1 + a_2 + \cdots + a_n)}{n}$ their arithmetic mean. Prove that
\[(1 + m_g)^n \leq (1 + a_1) \cdots(1 + a_n) \leq (1 + m_a)^n.\]
2012 India IMO Training Camp, 2
Let $P(z)=a_nz^n+a_{n-1}z^{n-1}+\ldots+a_mz^m$ be a polynomial with complex coefficients such that $a_m\neq 0, a_n\neq 0$ and $n>m$. Prove that
\[\text{max}_{|z|=1}\{|P(z)|\}\ge\sqrt{2|a_ma_n|+\sum_{k=m}^{n} |a_k|^2}\]
1986 China Team Selection Test, 2
Let $ a_1$, $ a_2$, ..., $ a_n$ and $ b_1$, $ b_2$, ..., $ b_n$ be $ 2 \cdot n$ real numbers. Prove that the following two statements are equivalent:
[b]i)[/b] For any $ n$ real numbers $ x_1$, $ x_2$, ..., $ x_n$ satisfying $ x_1 \leq x_2 \leq \ldots \leq x_ n$, we have $ \sum^{n}_{k \equal{} 1} a_k \cdot x_k \leq \sum^{n}_{k \equal{} 1} b_k \cdot x_k,$
[b]ii)[/b] We have $ \sum^{s}_{k \equal{} 1} a_k \leq \sum^{s}_{k \equal{} 1} b_k$ for every $ s\in\left\{1,2,...,n\minus{}1\right\}$ and $ \sum^{n}_{k \equal{} 1} a_k \equal{} \sum^{n}_{k \equal{} 1} b_k$.
2008 Hong Kong TST, 1
In a school there are $ 2008$ students. Students are members of certain committees. A committee has at most $ 1004$ members and every two students join a common committee.
(i) Determine the smallest possible number of committees in the school.
(ii) If it is further required that the union of any two committees consists of at most $ 1800$ students, will your answer in (i) still hold?
1992 Miklós Schweitzer, 4
show there exist positive constants $c_1$ and $c_2$ such that for any $n\geq 3$, whenever $T_1$ and $T_2$ are two trees on the set of vertices $X = \{1, 2, ..., n\}$, there exists a function $f : X \to \{-1, +1\}$ for which
$$\bigg | \sum_ {x \in P} f (x) \bigg | <c_1 \log n$$
for any path P that is a subgraph of $T_1$ or $T_2$ , but with an upper bound $c_2 \log n / \log \log n$ the statement is no longer true.
2012 Iran Team Selection Test, 1
For positive reals $a,b$ and $c$ with $ab+bc+ca=1$, show that
\[\sqrt{3}({\sqrt{a}+\sqrt{b}+\sqrt{c})\le \frac{a\sqrt{a}}{bc}+\frac{b\sqrt{b}}{ca}+\frac{c\sqrt{c}}{ab}.}\]
[i]Proposed by Morteza Saghafian[/i]
2007 All-Russian Olympiad Regional Round, 8.4
On the chessboard, $ 32$ black pawns and $ 32$ white pawns are arranged. In every move, a pawn can capture another pawn of the opposite color, moving diagonally to an adjacent square where the captured one stands. White pawns move only in upper-left or upper-right directions, while black ones can move in down-left or in down-right directions only; the captured pawn is removed from the board. A pawn cannot move without capturing an opposite pawn. Find the least possible number of pawns which can stay on the chessboard.
Russian TST 2021, P3
Let $n$ and $k$ be positive integers. Prove that for $a_1, \dots, a_n \in [1,2^k]$ one has
\[ \sum_{i = 1}^n \frac{a_i}{\sqrt{a_1^2 + \dots + a_i^2}} \le 4 \sqrt{kn}. \]
2010 Junior Balkan Team Selection Tests - Romania, 2
Let $n$ be an integer, $n \ge 2$. For each number $k = 1, 2, ....., n,$ denote by $a _ k$ the number of multiples of $k$ in the set $\{1, 2,. .., n \}$ and let $x _ k = \frac {1} {1} + \frac {1} {2} + \frac {1} {3} _... + \frac {1} {a _ k}$ .
Show that: $$\frac {x _ 1 + x _ 2 + ... + x _ n} {n} \le \frac {1} {1 ^ 2} + \frac {1} {2 ^ 2} + ... + \frac {1} {n ^ 2} $$.
1992 India National Olympiad, 2
If $x , y, z \in \mathbb{R}$ such that $x+y +z =4$ and $x^2 + y^2 +z^2 = 6$, then show that each of $x, y, z$ lies in the closed interval $\left[ \dfrac{2}{3} , 2 \right]$. Can $x$ attain the extreme value $\dfrac{2}{3}$ or $2$?
2012 Turkey Junior National Olympiad, 4
We want to place $2012$ pockets, including variously colored balls, into $k$ boxes such that
[b]i)[/b] For any box, all pockets in this box must include a ball with the same color
or
[b]ii)[/b] For any box, all pockets in this box must include a ball having a color which is not included in any other pocket in this box
Find the smallest value of $k$ for which we can always do this placement whatever the number of balls in the pockets and whatever the colors of balls.
2008 Gheorghe Vranceanu, 2
Show that there is a natural number $ n $ that satisfies the following inequalities:
$$ \sqrt{3} -\frac{1}{10}<\{ n\sqrt 3\} +\{ (n+1)\sqrt 3 \} <\sqrt 3. $$
1999 Balkan MO, 4
Let $\{a_n\}_{n\geq 0}$ be a non-decreasing, unbounded sequence of non-negative integers with $a_0=0$. Let the number of members of the sequence not exceeding $n$ be $b_n$. Prove that \[ (a_0 + a_1 + \cdots + a_m)( b_0 + b_1 + \cdots + b_n ) \geq (m + 1)(n + 1). \]
2019 Saudi Arabia JBMO TST, 2
Let $a, b, c$ be non-negative real numbers. Prove that $$a\sqrt{3a^2+6b^2}+b\sqrt{3b^2+6c^2}+c\sqrt{3c^2+6a^2}=>(a+b+c)^2$$
2019 Azerbaijan Junior NMO, 4
Prove that, for any triangle with side lengths $a,b,c$, the following inequality holds $$\frac{a}{(b+c)^2}+\frac{b}{(c+a)^2}+\frac{c}{(a+b)^2}\geq\frac9{8p}$$ ($p$ denotes the semiperimeter of a triangle)
1988 China National Olympiad, 1
Let $r_1,r_2,\dots ,r_n$ be real numbers. Given $n$ reals $a_1,a_2,\dots ,a_n$ that are not all equal to $0$, suppose that inequality
\[r_1(x_1-a_1)+ r_2(x_2-a_2)+\dots + r_n(x_n-a_n)\leq\sqrt{x_1^2+ x_2^2+\dots + x_n^2}-\sqrt{a_1^2+a_2^2+\dots +a_n^2}\]
holds for arbitrary reals $x_1,x_2,\dots ,x_n$. Find the values of $r_1,r_2,\dots ,r_n$.
2023 Kazakhstan National Olympiad, 2
$a,b,c$ are positive real numbers such that $a+b+c\ge 3$ and $a^2+b^2+c^2=2abc+1$. Prove that $$a+b+c\le 2\sqrt{abc}+1$$
Oliforum Contest IV 2013, 5
Let $x,y,z$ be distinct positive integers such that $(y+z)(z+x)=(x+y)^2$ . Show that \[x^2+y^2>8(x+y)+2(xy+1).\] (Paolo Leonetti)
2011 Croatia Team Selection Test, 1
Let $a,b,c$ be positive reals such that $a+b+c=3$. Prove the inequality
\[\frac{a^2}{a+b^2}+\frac{b^2}{b+c^2}+\frac{c^2}{c+a^2}\geq \frac{3}{2}.\]
2012 AMC 10, 21
Four distinct points are arranged in a plane so that the segments connecting them has lengths $a,a,a,a,2a,$ and $b$. What is the ratio of $b$ to $a$?
$ \textbf{(A)}\ \sqrt{3}\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ \sqrt{5}\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ \pi $
2021 China National Olympiad, 1
Let $\{ z_n \}_{n \ge 1}$ be a sequence of complex numbers, whose odd terms are real, even terms are purely imaginary, and for every positive integer $k$, $|z_k z_{k+1}|=2^k$. Denote $f_n=|z_1+z_2+\cdots+z_n|,$ for $n=1,2,\cdots$
(1) Find the minimum of $f_{2020}$.
(2) Find the minimum of $f_{2020} \cdot f_{2021}$.
1981 Polish MO Finals, 3
Prove that for any natural number $n$ and real numbers $a$ and $x$ satisfying $a^{n+1} \le x \le 1$ and $0 < a < 1$ it holds that
$$\prod_{k=1}^n \left|\frac{x-a^k}{x+a^k}\right| \le
\prod_{k=1}^n \frac{1-a^k}{1+a^k}$$
2012 Federal Competition For Advanced Students, Part 2, 1
Determine the maximum value of $m$, such that the inequality
\[ (a^2+4(b^2+c^2))(b^2+4(a^2+c^2))(c^2+4(a^2+b^2)) \ge m \]
holds for every $a,b,c \in \mathbb{R} \setminus \{0\}$ with $\left|\frac{1}{a}\right|+\left|\frac{1}{b}\right|+\left|\frac{1}{c}\right|\le 3$.
When does equality occur?