This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2012 India IMO Training Camp, 3

Let $\mathbb{R}^{+}$ denote the set of all positive real numbers. Find all functions $f:\mathbb{R}^{+}\longrightarrow \mathbb{R}$ satisfying \[f(x)+f(y)\le \frac{f(x+y)}{2}, \frac{f(x)}{x}+\frac{f(y)}{y}\ge \frac{f(x+y)}{x+y},\] for all $x, y\in \mathbb{R}^{+}$.

2014 Math Prize For Girls Problems, 6

Tags: inequalities
There are $N$ students in a class. Each possible nonempty group of students selected a positive integer. All of these integers are distinct and add up to 2014. Compute the greatest possible value of $N$.

2001 IMO Shortlist, 2

Let $a_0, a_1, a_2, \ldots$ be an arbitrary infinite sequence of positive numbers. Show that the inequality $1 + a_n > a_{n-1} \sqrt[n]{2}$ holds for infinitely many positive integers $n$.

1996 Tournament Of Towns, (519) 2

(a) Prove that $$3-\frac{2}{(n-1)!} < \frac{2^2-2}{2!}+\frac{2^2-2}{3!}+...+\frac{n^2-2}{n!}<3$$ (b) Find some positive integers $a$, $b$ and $c$ such that for any $n > 2$, $$b-\frac{c}{(n-2)!} < \frac{2^3-a}{2!}+\frac{3^3-a}{3!}+...+\frac{n^3-a}{n!}<b$$ (V Senderov, NB Vassiliev)

1993 Poland - Second Round, 3

A tetrahedron $OA_1B_1C_1$ is given. Let $A_2,A_3 \in OA_1, A_2,A_3 \in OA_1, A_2,A_3 \in OA_1$ be points such that the planes $A_1B_1C_1,A_2B_2C_2$ and $A_3B_3C_3$ are parallel and $OA_1 > OA_2 > OA_3 > 0$. Let $V_i$ be the volume of the tetrahedron $OA_iB_iC_i$ ($i = 1,2,3$) and $V$ be the volume of $OA_1B_2C_3$. Prove that $V_1 +V_2 +V_3 \ge 3V$.

1985 National High School Mathematics League, 4

Given 5 points on a plane. Let $\lambda$ be the ratio of maximum value between the points to minimum value between the points. Prove that $\lambda\geq2\sin\frac{3}{10}\pi$.

1987 Traian Lălescu, 2.1

Tags: inequalities
For any nonegative real $ a $ and natural $ n, $ prove that $$ \sqrt{a+1+\sqrt{a+2+\cdots +\sqrt{a+n}}} <a+3. $$

2005 Germany Team Selection Test, 2

If $a$, $b$, $c$ are positive reals such that $a+b+c=1$, prove that \[\frac{1+a}{1-a}+\frac{1+b}{1-b}+\frac{1+c}{1-c}\leq 2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right).\]

2005 Today's Calculation Of Integral, 81

Prove the following inequality. \[\frac{1}{12}(\pi -6+2\sqrt{3})\leq \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \ln (1+\cos 2x) dx\leq \frac{1}{4}(2-\sqrt{3})\]

2025 Macedonian Mathematical Olympiad, Problem 2

Let \( n > 2 \) be an integer, \( k > 1 \) a real number, and \( x_1, x_2, \ldots, x_n \) be positive real numbers such that \( x_1 \cdot x_2 \cdots x_n = 1 \). Prove that: \[ \frac{1 + x_1^k}{1 + x_2} + \frac{1 + x_2^k}{1 + x_3} + \cdots + \frac{1 + x_n^k}{1 + x_1} \geq n. \] When does equality hold?

2007 Romania National Olympiad, 4

Let $ m,n$ be two natural numbers with $ m > 1$ and $ 2^{2m \plus{} 1} \minus{} n^2\geq 0$. Prove that: \[ 2^{2m \plus{} 1} \minus{} n^2\geq 7 .\]

1989 AMC 12/AHSME, 11

Hi guys, I was just reading over old posts that I made last year ( :P ) and saw how much the level of Getting Started became harder. To encourage more people from posting, I decided to start a Problem of the Day. This is how I'll conduct this: 1. In each post (not including this one since it has rules, etc) everyday, I'll post the problem. I may post another thread after it to give hints though. 2. Level of problem.. This is VERY important. All problems in this thread will be all AHSME or problems similar to this level. No AIME. Some AHSME problems, however, that involve tough insight or skills will not be posted. The chosen problems will be usually ones that everyone can solve after working. Calculators are allowed when you solve problems but it is NOT necessary. 3. Response.. All you have to do is simply solve the problem and post the solution. There is no credit given or taken away if you get the problem wrong. This isn't like other threads where the number of problems you get right or not matters. As for posting, post your solutions here in this thread. Do NOT PM me. Also, here are some more restrictions when posting solutions: A. No single answer post. It doesn't matter if you put hide and say "Answer is ###..." If you don't put explanation, it simply means you cheated off from some other people. I've seen several posts that went like "I know the answer" and simply post the letter. What is the purpose of even posting then? Huh? B. Do NOT go back to the previous problem(s). This causes too much confusion. C. You're FREE to give hints and post different idea, way or answer in some cases in problems. If you see someone did wrong or you don't understand what they did, post here. That's what this thread is for. 4. Main purpose.. This is for anyone who visits this forum to enjoy math. I rememeber when I first came into this forum, I was poor at math compared to other people. But I kindly got help from many people such as JBL, joml88, tokenadult, and many other people that would take too much time to type. Perhaps without them, I wouldn't be even a moderator in this forum now. This site clearly made me to enjoy math more and more and I'd like to do the same thing. That's about the rule.. Have fun problem solving! Next post will contain the Day 1 Problem. You can post the solutions until I post one. :D

Kvant 2021, M2635

In the triangle $ABC$, the lengths of the sides $BC, CA$ and $AB$ are $a,b$ and $c{}$ respectively. Several segments are drawn from the vertex $C{}$, which cut the triangle $ABC$ into several triangles. Find the smallest number $M{}$ for which, with each such cut, the sum of the radii of the circles inscribed in triangles does not exceed $M{}$. [i]Porposed by O. Titov[/i]

1992 China Team Selection Test, 2

Let $n \geq 2, n \in \mathbb{N},$ find the least positive real number $\lambda$ such that for arbitrary $a_i \in \mathbb{R}$ with $i = 1, 2, \ldots, n$ and $b_i \in \left[0, \frac{1}{2}\right]$ with $i = 1, 2, \ldots, n$, the following holds: \[\sum^n_{i=1} a_i = \sum^n_{i=1} b_i = 1 \Rightarrow \prod^n_{i=1} a_i \leq \lambda \sum^n_{i=1} a_i b_i.\]

1987 Tournament Of Towns, (154) 5

We are given three non-negative numbers $A , B$ and $C$ about which it is known that $$A^4 + B^4 + C^4 \le 2(A^2B^2 + B^2C^2 + C^2A^2)$$ (a) Prove that each of $A, B$ and $C$ is not greater than the sum of the others. (b) Prove that $A^2 + B^2 + C^2 \le 2(AB + BC + CA)$ . (c) Does the original inequality follow from the one in (b)? (V.A. Senderov , Moscow)

2018 Moscow Mathematical Olympiad, 1

$a_1,a_2,...,a_{81}$ are nonzero, $a_i+a_{i+1}>0$ for $i=1,...,80$ and $a_1+a_2+...+a_{81}<0$. What is sign of $a_1*a_2*...*a_{81}$?

2019 Kyiv Mathematical Festival, 2

Tags: inequalities
Let $a,b,c>0$ and $abc\ge1.$ Prove that $a^4+b^3+c^2\ge a^3+b^2+c.$

2007 Today's Calculation Of Integral, 187

For a constant $a,$ let $f(x)=ax\sin x+x+\frac{\pi}{2}.$ Find the range of $a$ such that $\int_{0}^{\pi}\{f'(x)\}^{2}\ dx \geq f\left(\frac{\pi}{2}\right).$

2015 Caucasus Mathematical Olympiad, 2

The equation $(x+a) (x+b) = 9$ has a root $a+b$. Prove that $ab\le 1$.

2017 Estonia Team Selection Test, 8

Let $a$, $b$, $c$ be positive real numbers such that $\min(ab,bc,ca) \ge 1$. Prove that $$\sqrt[3]{(a^2+1)(b^2+1)(c^2+1)} \le \left(\frac{a+b+c}{3}\right)^2 + 1.$$ [i]Proposed by Tigran Margaryan, Armenia[/i]

2017 District Olympiad, 1

Let $ \left( a_n \right)_{n\ge 1} $ be a sequence of real numbers such that $ a_1>2 $ and $ a_{n+1} =a_1+\frac{2}{a_n} , $ for all natural numbers $ n. $ [b]a)[/b] Show that $ a_{2n-1} +a_{2n} >4 , $ for all natural numbers $ n, $ and $ \lim_{n\to\infty} a_n =2. $ [b]b)[/b] Find the biggest real number $ a $ for which the following inequality is true: $$ \sqrt{x^2+a_1^2} +\sqrt{x^2+a_2^2} +\sqrt{x^2+a_3^2} +\cdots +\sqrt{x^2+a_n^2} > n\sqrt{x^2+a^2}, \quad\forall x\in\mathbb{R} ,\quad\forall n\in\mathbb{N} . $$

2008 JBMO Shortlist, 6

If the real numbers $a, b, c, d$ are such that $0 < a,b,c,d < 1$, show that $1 + ab + bc + cd + da + ac + bd > a + b + c + d$.

2009 Kyrgyzstan National Olympiad, 9

Tags: inequalities
For any positive $ a_1 ,a_2 ,...,a_n$ prove that $ \frac {{a_1 }} {{a_2 \plus{} a_3 }} \plus{} \frac {{a_2 }} {{a_3 \plus{} a_4 }} \plus{} ... \plus{} \frac {{a_n }} {{a_1 \plus{} a_2 }} > \frac {n} {4}$ holds.

1974 IMO Longlists, 50

Tags: inequalities
Let $m$ and $n$ be natural numbers with $m>n$. Prove that \[2(m-n)^2(m^2-n^2+1)\ge 2m^2-2mn+1\]

1995 Israel Mathematical Olympiad, 5

Let $n$ be an odd positive integer and let $x_1,x_2,...,x_n$ be n distinct real numbers that satisfy $|x_i -x_j| \le 1$ for $1 \le i < j \le n$. Prove that $$\sum_{i<j} |x_i -x_j| \le \left[\frac{n}{2} \right] \left(\left[\frac{n}{2} \right]-1 \right)$$