This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

1997 India National Olympiad, 3

If $a,b,c$ are three real numbers and \[ a + \dfrac{1}{b} = b + \dfrac{1}{c} = c + \dfrac{1}{a} = t \] for some real number $t$, prove that $abc + t = 0 .$

2015 239 Open Mathematical Olympiad, 6

Tags: inequalities
Positive real numbers $a,b,c$ satisfy $$2a^3b+2b^3c+2c^3a=a^2b^2+b^2c^2+c^2a^2.$$ Prove that $$2ab(a-b)^2+2bc(b-c)^2+2ca(c-a)^2 \geq(ab+bc+ca)^2.$$

2022 China Second Round A1, 1

$a,b,c,d$ are real numbers so that $a\geq b,c\geq d$,\[|a|+2|b|+3|c|+4|d|=1.\] Let $P=(a-b)(b-c)(c-d)$,find the maximum and minimum value of $P$.

2022 Stanford Mathematics Tournament, 5

$x$, $y$, and $z$ are real numbers such that $xyz=10$. What is the maximum possible value of $x^3y^3z^3-3x^4-12y^2-12z^4$?

1956 AMC 12/AHSME, 44

Tags: inequalities
If $ x < a < 0$ means that $ x$ and $ a$ are numbers such that $ x$ is less than $ a$ and $ a$ is less than zero, then: $ \textbf{(A)}\ x^2 < ax < 0 \qquad\textbf{(B)}\ x^2 > ax > a^2 \qquad\textbf{(C)}\ x^2 < a^2 < 0$ $ \textbf{(D)}\ x^2 > ax\text{ but }ax < 0 \qquad\textbf{(E)}\ x^2 > a^2\text{ but }a^2 < 0$

2001 Croatia National Olympiad, Problem 3

Let $a$ and $b$ be positive numbers. Prove the inequality $$\sqrt[3]{\frac ab}+\sqrt[3]{\frac ba}\le\sqrt[3]{2(a+b)\left(\frac1a+\frac1b\right)}.$$

1990 All Soviet Union Mathematical Olympiad, 529

A quadratic polynomial $p(x)$ has positive real coefficients with sum $1$. Show that given any positive real numbers with product $1$, the product of their values under $p$ is at least $1$.

2002 Croatia National Olympiad, Problem 2

Tags: inequalities
Let $a,b,c$ be real numbers greater than $1$. Prove the inequality $$\log_a\left(\frac{b^2}{ac}-b+ac\right)\log_b\left(\frac{c^2}{ab}-c+ab\right)\log_c\left(\frac{a^2}{bc}-a+bc\right)\ge1.$$

2023 CIIM, 6

Let $n$ be a positive integer. We define $f(n)$ as the number of finite sequences $(a_1, a_2, \ldots , a_k)$ of positive integers such that $a_1 < a_2 < a_3 < \cdots < a_k$ and $$a_1+a_2^2+a_3^3+\cdots + a_k^k \leq n.$$ Determine the positive constants $\alpha$ and $C$ such that $$\lim\limits_{n\rightarrow \infty} \frac{f(n)}{n^\alpha}=C.$$

MathLinks Contest 1st, 2

Tags: inequalities
Prove that for all positive integers $a, b, c$ the following inequality holds: $$\frac{a + b}{a + c}+\frac{b + c}{b + a}+\frac{c + a}{c + b} \le \frac{a}{b}+\frac{b}{c}+\frac{c}{a}$$

2024 Moldova EGMO TST, 4

In the acute-angled triangle $ABC$, on the lines $BC$, $AC$, $AB$ we consider the points $D$, $E$ and, respectively, $F$, such that $AD\perp AC, BE\perp AB, CF\perp AC$. Let the point $A', B', C'$ be such that $\{A'\}=BC\cap EF, \{B'\}=AC\cap DF, \{C'\}=AB\cap DE$. Prove that the following inequality is true $$\frac{A'F}{A'E} \cdot \frac{B'D}{B'F} \cdot \frac{C'E}{C'D}\geq8$$

1954 Czech and Slovak Olympiad III A, 3

Show that $$\log_2\pi+\log_4\pi<\frac52.$$

2005 Germany Team Selection Test, 3

Let $ABC$ be a triangle with orthocenter $H$, incenter $I$ and centroid $S$, and let $d$ be the diameter of the circumcircle of triangle $ABC$. Prove the inequality \[9\cdot HS^2+4\left(AH\cdot AI+BH\cdot BI+CH\cdot CI\right)\geq 3d^2,\] and determine when equality holds.

2009 Singapore Team Selection Test, 2

Tags: inequalities
If $a$, $b$ ,$c$ are three positive real numbers such that $ab+bc+ca = 1$, prove that \[ \sqrt[3]{ \frac{1}{a} + 6b} + \sqrt[3]{\frac{1}{b} + 6c} + \sqrt[3]{\frac{1}{c} + 6a } \leq \frac{1}{abc}. \]

1992 IMO Shortlist, 17

Let $ \alpha(n)$ be the number of digits equal to one in the binary representation of a positive integer $ n.$ Prove that: (a) the inequality $ \alpha(n) (n^2 ) \leq \frac{1}{2} \alpha(n)(\alpha(n) + 1)$ holds; (b) the above inequality is an equality for infinitely many positive integers, and (c) there exists a sequence $ (n_i )^{\infty}_1$ such that $ \frac{\alpha ( n^2_i )}{\alpha (n_i }$ goes to zero as $ i$ goes to $ \infty.$ [i]Alternative problem:[/i] Prove that there exists a sequence a sequence $ (n_i )^{\infty}_1$ such that $ \frac{\alpha ( n^2_i )}{\alpha (n_i )}$ (d) $ \infty;$ (e) an arbitrary real number $ \gamma \in (0,1)$; (f) an arbitrary real number $ \gamma \geq 0$; as $ i$ goes to $ \infty.$

2023 UMD Math Competition Part II, 5

Let $0 \le a_1 \le a_2 \le \dots \le a_n \le 1$ be $n$ real numbers with $n \ge 2$. Assume $a_1 + a_2 + \dots + a_n \ge n-1$. Prove that \[ a_2a_3\dots a_n \ge \left( 1 - \frac 1n \right)^{n-1} \]

2009 Junior Balkan Team Selection Tests - Moldova, 2

Real positive numbers $a, b, c$ satisfy $abc=1$. Prove the inequality $$\frac{a^2+b^2}{a^4+b^4}+\frac{b^2+c^2}{b^4+c^4}+\frac{c^2+a^2}{c^4+a^4}\leq a+b+c.$$

2017 Junior Balkan Team Selection Tests - Romania, 2

Tags: inequalities
Given $x_1,x_2,...,x_n$ real numbers, prove that there exists a real number $y$, such that, $$\{y-x_1\}+\{y-x_2\}+...+\{y-x_n\} \leq \frac{n-1}{2}$$

1998 Tournament Of Towns, 1

Prove that \[\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\geq \frac{a+b+c}{3}\] for positive reals $a,b,c$ (S Tokarev)

1971 IMO Longlists, 2

Let us denote by $s(n)= \sum_{d|n} d$ the sum of divisors of a positive integer $n$ ($1$ and $n$ included). If $n$ has at most $5$ distinct prime divisors, prove that $s(n) < \frac{77}{16} n.$ Also prove that there exists a natural number $n$ for which $s(n) < \frac{76}{16} n$ holds.

2019 Azerbaijan Senior NMO, 5

Prove that for any $a;b;c\in\mathbb{R^+}$, we have $$(a+b)^2+(a+b+4c)^2\geq \frac{100abc}{a+b+c}$$ When does the equality hold?

1975 All Soviet Union Mathematical Olympiad, 212

Prove that for all the positive numbers $a,b,c$ the following inequality is valid: $$a^3+b^3+c^3+3abc>ab(a+b)+bc(b+c)+ac(a+c)$$

2025 Thailand Mathematical Olympiad, 3

Tags: inequalities
Let $a,b,c,x,y,z$ be positive real numbers such that $ay+bz+cx \le az+bx+cy$. Prove that $$ \frac{xy}{ax+bx+cy}+\frac{yz}{by+cy+az}+\frac{zx}{cz+az+bx} \le \frac{x+y+z}{a+b+c}$$

2014 Estonia Team Selection Test, 3

Three line segments, all of length $1$, form a connected figure in the plane. Any two different line segments can intersect only at their endpoints. Find the maximum area of the convex hull of the figure.

2009 Indonesia TST, 2

For every positive integer $ n$, let $ \phi(n)$ denotes the number of positive integers less than $ n$ that is relatively prime to $ n$ and $ \tau(n)$ denote the sum of all positive divisors of $ n$. Let $ n$ be a positive integer such that $ \phi(n)|n\minus{}1$ and that $ n$ is not a prime number. Prove that $ \tau(n)>2009$.