Found problems: 6530
2013 Dutch IMO TST, 5
Let $a, b$, and $c$ be positive real numbers satisfying $abc = 1$.
Show that $a + b + c \ge \sqrt{\frac13 (a + 2)(b + 2)(c + 2)}$
2002 China Team Selection Test, 2
$ A_1$, $ B_1$ and $ C_1$ are the projections of the vertices $ A$, $ B$ and $ C$ of triangle $ ABC$ on the respective sides. If $ AB \equal{} c$, $ AC \equal{} b$, $ BC \equal{} a$ and $ AC_1 \equal{} 2t AB$, $ BA_1 \equal{} 2rBC$, $ CB_1 \equal{} 2 \mu AC$. Prove that:
\[ \frac {a^2}{b^2} \cdot \left( \frac {t}{1 \minus{} 2t} \right)^2 \plus{} \frac {b^2}{c^2} \cdot \left( \frac {r}{1 \minus{} 2r} \right)^2 \plus{} \frac {c^2}{a^2} \cdot \left( \frac {\mu}{1 \minus{} 2\mu} \right)^2 \plus{} 16tr \mu \geq 1
\]
India EGMO 2021 TST, 2
Suppose that $a,b,c,d$ are positive real numbers satisfying $(a+c)(b+d)=ac+bd$. Find the smallest possible value of
$$\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}.$$
[i]Israel[/i]
2008 Mongolia Team Selection Test, 3
Find the maximum number $ C$ such that for any nonnegative $ x,y,z$ the inequality
$ x^3 \plus{} y^3 \plus{} z^3 \plus{} C(xy^2 \plus{} yz^2 \plus{} zx^2) \ge (C \plus{} 1)(x^2 y \plus{} y^2 z \plus{} z^2 x)$ holds.
2000 Switzerland Team Selection Test, 2
Real numbers $a_1,a_2,...,a_{16}$ satisfy the conditions $\sum_{i=1}^{16}a_i = 100$ and $\sum_{i=1}^{16}a_i^2 = 1000$ .
What is the greatest possible value of $a_16$?
2024 Singapore MO Open, Q4
Alice and Bob play a game. Bob starts by picking a set $S$ consisting of $M$ vectors of length $n$ with entries either $0$ or $1$. Alice picks a sequence of numbers $y_1\le y_2\le\dots\le y_n$ from the interval $[0,1]$, and a choice of real numbers $x_1,x_2\dots,x_n\in \mathbb{R}$. Bob wins if he can pick a vector $(z_1,z_2,\dots,z_n)\in S$ such that $$\sum_{i=1}^n x_iy_i\le \sum_{i=1}^n x_iz_i,$$otherwise Alice wins. Determine the minimum value of $M$ so that Bob can guarantee a win.
[i]Proposed by DVDthe1st[/i]
2019 Canadian Mathematical Olympiad Qualification, 8
For $t \ge 2$, define $S(t)$ as the number of times $t$ divides into $t!$. We say that a positive integer $t$ is a [i]peak[/i] if $S(t) > S(u)$ for all values of $u < t$.
Prove or disprove the following statement:
For every prime $p$, there is an integer $k$ for which $p$ divides $k$ and $k$ is a peak.
2011 National Olympiad First Round, 4
How many subsets, which does not contain two consecutive numbers, are there of the set $\{1,2,\dots ,20\}$ with $8$ elements?
$\textbf{(A)}\ {{13}\choose{8}} \qquad\textbf{(B)}\ {{13}\choose{9}} \qquad\textbf{(C)}\ {{14}\choose{8}} \qquad\textbf{(D)}\ {{14}\choose{9}} \qquad\textbf{(E)}\ {{20}\choose{15}}$
2017 Greece JBMO TST, Source
[url=https://artofproblemsolving.com/community/c675547][b]Greece JBMO TST 2017[/b][/url]
[url=http://artofproblemsolving.com/community/c6h1663730p10567608][b]Problem 1[/b][/url]. Positive real numbers $a,b,c$ satisfy $a+b+c=1$. Prove that
$$(a+1)\sqrt{2a(1-a)} + (b+1)\sqrt{2b(1-b)} + (c+1)\sqrt{2c(1-c)} \geq 8(ab+bc+ca).$$
Also, find the values of $a,b,c$ for which the equality happens.
[url=http://artofproblemsolving.com/community/c6h1663731p10567619][b]Problem 2[/b][/url]. Let $ABC$ be an acute-angled triangle inscribed in a circle $\mathcal C (O, R)$ and $F$ a point on the side $AB$ such that $AF < AB/2$. The circle $c_1(F, FA)$ intersects the line $OA$ at the point $A'$ and the circle $\mathcal C$ at $K$. Prove that the quadrilateral $BKFA'$ is cyclic and its circumcircle contains point $O$.
[url=http://artofproblemsolving.com/community/c6h1663732p10567627][b]Problem 3[/b][/url]. Prove that for every positive integer $n$, the number $A_n = 7^{2n} -48n - 1$ is a multiple of $9$.
[url=http://artofproblemsolving.com/community/c6h1663734p10567640][b]Problem 4[/b][/url]. Let $ABC$ be an equilateral triangle of side length $a$, and consider $D$, $E$ and $F$ the midpoints of the sides $(AB), (BC)$, and $(CA)$, respectively. Let $H$ be the the symmetrical of $D$ with respect to the line $BC$. Color the points $A, B, C, D, E, F, H$ with one of the two colors, red and blue.
[list=1]
[*] How many equilateral triangles with all the vertices in the set $\{A, B, C, D, E, F, H\}$ are there?
[*] Prove that if points $B$ and $E$ are painted with the same color, then for any coloring of the remaining points there is an equilateral triangle with vertices in the set $\{A, B, C, D, E, F, H\}$ and having the same color.
[*] Does the conclusion of the second part remain valid if $B$ is blue and $E$ is red?
[/list]
Russian TST 2018, P4
Let $a_1,\ldots,a_{n+1}$ be positive real numbers satisfying $1/(a_1+1)+\cdots+1/(a_{n+1}+1)=n$. Prove that \[\sum_{i=1}^{n+1}\prod_{j\neq i}\sqrt[n]{a_j}\leqslant\frac{n+1}{n}.\]
2014 Romania Team Selection Test, 3
Let $n$ a positive integer and let $f\colon [0,1] \to \mathbb{R}$ an increasing function. Find the value of :
\[
\max_{0\leq x_1\leq\cdots\leq x_n\leq 1}\sum_{k=1}^{n}f\left ( \left | x_k-\frac{2k-1}{2n} \right | \right )\]
1997 Turkey MO (2nd round), 3
Let $n$ and $k$ be positive integers, where $n > 1$ is odd. Suppose $n$ voters are to elect one of the $k$ cadidates from a set $A$ according to the rule of "majoritarian compromise" described below. After each voter ranks the candidates in a column according to his/her preferences, these columns are concatenated to form a $k$ x $n$ voting matrix. We denote the number of ccurences of $a \in A$ in the $i$-th row of the voting matrix by $a_{i}$ . Let $l_{a}$ stand for the minimum integer $l$ for which $\sum^{l}_{i=1}{a_{i}}> \frac{n}{2}$.
Setting $l'= min \{l_{a} | a \in A\}$, we will regard the voting matrices which make the set $\{a \in A | l_{a} = l' \}$ as admissible. For each such matrix, the single candidate in this set will get elected according to majoritarian compromise. Moreover, if $w_{1} \geq w_{2} \geq ... \geq w_{k} \geq 0$ are given, for each admissible voting matrix, $\sum^{k}_{i=1}{w_{i}a_{i}}$ is called the total weighted score of $a \in A$. We will say that the system $(w_{1},w_{2}, . . . , w_{k})$ of weights represents majoritarian compromise if the total score of the elected candidate is maximum among the scores of all candidates.
(a) Determine whether there is a system of weights representing majoritarian compromise if $k = 3$.
(b) Show that such a system of weights does not exist for $k > 3$.
2017 Istmo Centroamericano MO, 4
Suppose that $a$ and $ b$ are distinct positive integers satisfying $20a + 17b = p$ and $17a + 20b = q$ for certain primes $p$ and $ q$. Determine the minimum value of $p + q$.
2015 Latvia Baltic Way TST, 12
For real positive numbers $a, b, c$, the equality $abc = 1$ holds. Prove that
$$\frac{a^{2014}}{1 + 2 bc}+\frac{b^{2014}}{1 + 2ac}+\frac{c^{2014}}{1 + 2ab} \ge \frac{3}{ab+bc+ca}.$$
1972 IMO Longlists, 6
Prove the inequality
\[(n + 1)\cos\frac{\pi}{n + 1}- n\cos\frac{\pi}{n}> 1\]
for all natural numbers $n \ge 2.$
2002 Iran MO (3rd Round), 4
$a_{n}$ ($n$ is integer) is a sequence from positive reals that \[a_{n}\geq \frac{a_{n+2}+a_{n+1}+a_{n-1}+a_{n-2}}4\] Prove $a_{n}$ is constant.
2001 Miklós Schweitzer, 6
Let $I\subset \mathbb R$ be a non-empty open interval, $\varepsilon\geq 0$ and $f\colon I\rightarrow\mathbb R$ a function satisfying the
$$f(tx+(1-t)y)\leq tf(x)+(1-t)f(y)+\varepsilon t(1-t)|x-y|$$
inequality for all $x,y\in I$ and $t\in [0,1]$. Prove that there exists a convex $g\colon I\rightarrow\mathbb R$ function, such that the function $l :=f-g$ has the $\varepsilon$-Lipschitz property, that is
$$|l(x)-l(y)|\leq \varepsilon|x-y|\text{ for all }x,y\in I$$
2013 National Olympiad First Round, 24
$77$ stones weighing $1,2,\dots, 77$ grams are divided into $k$ groups such that total weights of each group are different from each other and each group contains less stones than groups with smaller total weights. For how many $k\in \{9,10,11,12\}$, is such a division possible?
$
\textbf{(A)}\ 4
\qquad\textbf{(B)}\ 3
\qquad\textbf{(C)}\ 2
\qquad\textbf{(D)}\ 1
\qquad\textbf{(E)}\ \text{None of above}
$
2012 Morocco TST, 3
Find the maximal value of the following expression, if $a,b,c$ are nonnegative and $a+b+c=1$.
\[ \frac{1}{a^2 -4a+9} + \frac {1}{b^2 -4b+9} + \frac{1}{c^2 -4c+9} \]
2013 Indonesia MO, 3
Determine all positive real $M$ such that for any positive reals $a,b,c$, at least one of $a + \dfrac{M}{ab}, b + \dfrac{M}{bc}, c + \dfrac{M}{ca}$ is greater than or equal to $1+M$.
1992 Flanders Math Olympiad, 4
Let $A,B,P$ positive reals with $P\le A+B$.
(a) Choose reals $\theta_1,\theta_2$ with $A\cos\theta_1 + B\cos\theta_2=P$ and prove that \[ A\sin\theta_1 + B\sin\theta_2 \le \sqrt{(A+B-P)(A+B+P)} \]
(b) Prove equality is attained when $\theta_1=\theta_2=\arccos\left(\dfrac{P}{A+B}\right)$.
(c) Take $A=\dfrac{1}{2}xy, B=\dfrac{1}{2}wz$ and $P=\dfrac14 \left(x^2+y^2-z^2-w^2\right)$ with $0<x\le y\le x+z+w$, $z,w>0$ and $z^2+w^2<x^2+y^2$.
Show that we can translate (a) and (b) into the following theorem: from all quadrilaterals with (ordered) sidelenghts $(x,y,z,w)$, the cyclical one has the greatest area.
1999 Greece National Olympiad, 1
Let $f(x)=ax^2+bx+c$, where $a,b,c$ are nonnegative real numbers, not all equal to zero. Prove that $f(xy)^2\le f(x^2)f(y^2)$ for all real numbers $x,y$.
1992 Romania Team Selection Test, 2
Let $ a_1, a_2, ..., a_k $ be distinct positive integers such that the $2^k$ sums $\displaystyle\sum\limits_{i=1}^{k}{\epsilon_i a_i}$, $\epsilon_i\in\left\{0,1\right\}$ are distinct.
a) Show that $ \dfrac{1}{a_1}+\dfrac{1}{a_2}+...+\dfrac{1}{a_k}\le2(1-2^{-k}) $;
b) Find the sequences $(a_1,a_2,...,a_k)$ for which the equality holds.
[i]Șerban Buzețeanu[/i]
2009 Miklós Schweitzer, 12
Let $ Z_1,\,Z_2\dots,\,Z_n$ be $ d$-dimensional independent random (column) vectors with standard normal distribution, $ n \minus{} 1 > d$. Furthermore let
\[ \overline Z \equal{} \frac {1}{n}\sum_{i \equal{} 1}^n Z_i,\quad S_n \equal{} \frac {1}{n \minus{} 1}\sum_{i \equal{} 1}^n(Z_i \minus{} \overline Z)(Z_i \minus{} \overline Z)^\top\]
be the sample mean and corrected empirical covariance matrix. Consider the standardized samples $ Y_i \equal{} S_n^{ \minus{} 1/2}(Z_i \minus{} \overline Z)$, $ i \equal{} 1,2,\dots,n$. Show that
\[ \frac {E|Y_1 \minus{} Y_2|}{E|Z_1 \minus{} Z_2|} > 1,\]
and that the ratio does not depend on $ d$, only on $ n$.
1989 Austrian-Polish Competition, 8
$ABC$ is an acute-angled triangle and $P$ a point inside or on the boundary. The feet of the perpendiculars from $P$ to $BC, CA, AB$ are $A', B', C'$ respectively. Show that if $ABC$ is equilateral, then $\frac{AC'+BA'+CB'}{PA'+PB'+PC'}$ is the same for all positions of $P$, but that for any other triangle it is not.