This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2015 China Western Mathematical Olympiad, 7

Let $a\in (0,1)$, $f(z)=z^2-z+a, z\in \mathbb{C}$. Prove the following statement holds: For any complex number z with $|z| \geq 1$, there exists a complex number $z_0$ with $|z_0|=1$, such that $|f(z_0)| \leq |f(z)|$.

2013 India Regional Mathematical Olympiad, 5

Let $n \ge 3$ be a natural number and let $P$ be a polygon with $n$ sides. Let $a_1,a_2,\cdots, a_n$ be the lengths of sides of $P$ and let $p$ be its perimeter. Prove that \[\frac{a_1}{p-a_1}+\frac{a_2}{p-a_2}+\cdots + \frac{a_n}{p-a_n} < 2 \]

1966 IMO Longlists, 2

Tags: inequalities
Given $n$ positive numbers $a_{1},$ $a_{2},$ $...,$ $a_{n}$ such that $a_{1}\cdot a_{2}\cdot ...\cdot a_{n}=1.$ Prove \[ \left( 1+a_{1}\right) \left( 1+a_{2}\right) ...\left(1+a_{n}\right) \geq 2^{n}.\]

2008 Junior Balkan Team Selection Tests - Romania, 3

Let $ n$ be a positive integer and let $ a_1,a_2,\ldots,a_n$ be positive real numbers such that: \[ \sum^n_{i \equal{} 1} a_i \equal{} \sum^n_{i \equal{} 1} \frac {1}{a_i^2}. \] Prove that for every $ i \equal{} 1,2,\ldots,n$ we can find $ i$ numbers with sum at least $ i$.

2022 South East Mathematical Olympiad, 5

Positive sequences $\{a_n\},\{b_n\}$ satisfy:$a_1=b_1=1,b_n=a_nb_{n-1}-\frac{1}{4}(n\geq 2)$. Find the minimum value of $4\sqrt{b_1b_2\cdots b_m}+\sum_{k=1}^m\frac{1}{a_1a_2\cdots a_k}$,where $m$ is a given positive integer.

2004 Romania Team Selection Test, 1

Let $a_1,a_2,a_3,a_4$ be the sides of an arbitrary quadrilateral of perimeter $2s$. Prove that \[ \sum\limits^4_{i=1} \dfrac 1{a_i+s} \leq \dfrac 29\sum\limits_{1\leq i<j\leq 4} \dfrac 1{ \sqrt { (s-a_i)(s-a_j)}}. \] When does the equality hold?

2021 239 Open Mathematical Olympiad, 5

Let $a,b,c$ be some complex numbers. Prove that $$|\dfrac{a^2}{ab+ac-bc}| + |\dfrac{b^2}{ba+bc-ac}| + |\dfrac{c^2}{ca+cb-ab}| \ge \dfrac{3}{2}$$ if the denominators are not 0

2004 IMC, 2

Let $f,g:[a,b]\to [0,\infty)$ be two continuous and non-decreasing functions such that each $x\in [a,b]$ we have \[ \int^x_a \sqrt { f(t) }\ dt \leq \int^x_a \sqrt { g(t) }\ dt \ \ \textrm{and}\ \int^b_a \sqrt {f(t)}\ dt = \int^b_a \sqrt { g(t)}\ dt. \] Prove that \[ \int^b_a \sqrt { 1+ f(t) }\ dt \geq \int^b_a \sqrt { 1 + g(t) }\ dt. \]

1991 Baltic Way, 4

A polynomial $p$ with integer coefficients is such that $p(-n) < p(n) < n$ for some integer $n$. Prove that $p(-n) < -n$.

2014 IMO, 1

Let $a_0 < a_1 < a_2 < \dots$ be an infinite sequence of positive integers. Prove that there exists a unique integer $n\geq 1$ such that \[a_n < \frac{a_0+a_1+a_2+\cdots+a_n}{n} \leq a_{n+1}.\] [i]Proposed by Gerhard Wöginger, Austria.[/i]

2021 Turkey Junior National Olympiad, 3

Let $x, y, z$ be real numbers such that $$x+y+z=2, \;\;\;\; xy+yz+zx=1$$ Find the maximum possible value of $x-y$.

OMMC POTM, 2023 9

Show that for any $8$ distinct positive real numbers, one can choose a quadraple of them $(a,b,c,d)$ , all distinct such that $$(ac+bd)^2 \ge \frac{2+\sqrt3}{4}\left(a^2+b^2 \right)\left(c^2+d^2 \right)$$ [i]Proposed by Evan Chang (squareman), USA[/i]

2018 India IMO Training Camp, 3

Let $a_n, b_n$ be sequences of positive reals such that,$$a_{n+1}= a_n + \frac{1}{2b_n}$$ $$b_{n+1}= b_n + \frac{1}{2a_n}$$ for all $n\in\mathbb N$. Prove that, $\text{max}\left(a_{2018}, b_{2018}\right) >44$.

2018 Taiwan TST Round 2, 5

An integer $n \geq 3$ is given. We call an $n$-tuple of real numbers $(x_1, x_2, \dots, x_n)$ [i]Shiny[/i] if for each permutation $y_1, y_2, \dots, y_n$ of these numbers, we have $$\sum \limits_{i=1}^{n-1} y_i y_{i+1} = y_1y_2 + y_2y_3 + y_3y_4 + \cdots + y_{n-1}y_n \geq -1.$$ Find the largest constant $K = K(n)$ such that $$\sum \limits_{1 \leq i < j \leq n} x_i x_j \geq K$$ holds for every Shiny $n$-tuple $(x_1, x_2, \dots, x_n)$.

2014 India Regional Mathematical Olympiad, 6

For any natural number, let $S(n)$ denote sum of digits of $n$. Find the number of $3$ digit numbers for which $S(S(n)) = 2$.

2014 Hanoi Open Mathematics Competitions, 2

How many integers are there in $\{0,1, 2,..., 2014\}$ such that $C^x_{2014} \ge C^{999}{2014}$ ? (A): $15$, (B): $16$, (C): $17$, (D): $18$, (E) None of the above. Note: $C^{m}_{n}$ stands for $\binom {m}{n}$

2012 Tuymaada Olympiad, 2

Let $P(x)$ be a real quadratic trinomial, so that for all $x\in \mathbb{R}$ the inequality $P(x^3+x)\geq P(x^2+1)$ holds. Find the sum of the roots of $P(x)$. [i]Proposed by A. Golovanov, M. Ivanov, K. Kokhas[/i]

2023 OMpD, 4

Let $n \geq 0$ be an integer and $f: [0, 1] \rightarrow \mathbb{R}$ an integrable function such that: $$\int^1_0f(x)dx = \int^1_0xf(x)dx = \int^1_0x^2f(x)dx = \ldots = \int^1_0x^nf(x)dx = 1$$ Prove that: $$\int_0^1f(x)^2dx \geq (n+1)^2$$

2001 IMO, 2

Tags: inequalities
Prove that for all positive real numbers $a,b,c$, \[ \frac{a}{\sqrt{a^2 + 8bc}} + \frac{b}{\sqrt{b^2 + 8ca}} + \frac{c}{\sqrt{c^2 + 8ab}} \geq 1. \]

2019 Latvia Baltic Way TST, 13

Let $s(k)$ denotes sum of digits of positive integer $k$. Prove that there are infinitely many positive integers $n$, which are not divisible by $10$ and satisfies: $$s(n^2) < s(n) - 5$$

PEN K Problems, 14

Find all functions $f:\mathbb{Z} \to \mathbb{Z}$ such that for all $m\in\mathbb{Z}$: [list][*] $f(m+8) \le f(m)+8$, [*] $f(m+11) \ge f(m)+11$.[/list]

2018 JBMO Shortlist, G4

Let $ABC$ be a triangle with side-lengths $a, b, c$, inscribed in a circle with radius $R$ and let $I$ be ir's incenter. Let $P_1, P_2$ and $P_3$ be the areas of the triangles $ABI, BCI$ and $CAI$, respectively. Prove that $$\frac{R^4}{P_1^2}+\frac{R^4}{P_2^2}+\frac{R^4}{P_3^2}\ge 16$$

1987 Traian Lălescu, 1.3

Let $ A'\neq A $ be the intersection of the bisector of $ \angle BAC $ with the circumcircle of the triangle $ ABC. $ Prove that $ AA'>\frac{AB+AC}{2}. $

2005 MOP Homework, 1

Tags: inequalities
Given real numbers $x$, $y$, $z$ such that $xyz=-1$, show that $x^4+y^4+z^4+3(x+y+z) \ge \sum_{sym} \frac{x^2}{y}$.

1993 China Team Selection Test, 2

Let $n \geq 2, n \in \mathbb{N}$, $a,b,c,d \in \mathbb{N}$, $\frac{a}{b} + \frac{c}{d} < 1$ and $a + c \leq n,$ find the maximum value of $\frac{a}{b} + \frac{c}{d}$ for fixed $n.$