This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

1990 India National Olympiad, 5

Let $ a$, $ b$, $ c$ denote the sides of a triangle. Show that the quantity \[ \frac{a}{b\plus{}c}\plus{}\frac{b}{c\plus{}a}\plus{}\frac{c}{a\plus{}b}\] must lie between the limits $ 3/2$ and 2. Can equality hold at either limits?

2017 NMTC Junior, 4

a) $a,b,c,d$ are positive reals such that $abcd=1$. Prove that \[\sum_{cyc} \frac{1+ab}{1+a}\geq 4.\] (b)In a scalene triangle $ABC$, $\angle BAC =120^{\circ}$. The bisectors of angles $A,B,C$ meets the opposite sides in $P,Q,R$ respectively. Prove that the circle on $QR$ as diameter passes through the point $P$.

1970 Czech and Slovak Olympiad III A, 3

Let $p>0$ be a given parameter. Determine all real $x$ such that \[\frac{1}{\,x+\sqrt{p-x^2\,}\,}+\frac{1}{\,x-\sqrt{p-x^2\,}\,}\ge\frac{1}{\,p\,}.\]

2012 Kyrgyzstan National Olympiad, 2

Tags: inequalities
Given positive real numbers $ {a_1},{a_2},...,{a_n} $ with $ {a_1}+{a_2}+...+{a_n}= 1 $. Prove that $ \left({\frac{1}{{a_1^2}}-1}\right)\left({\frac{1}{{a_2^2}}-1}\right)...\left({\frac{1}{{a_n^2}}-1}\right)\geqslant{({n^2}-1)^n} $.

2013 Argentina Cono Sur TST, 3

$1390$ ants are placed near a line, such that the distance between their heads and the line is less than $1\text{cm}$ and the distance between the heads of two ants is always larger than $2\text{cm}$. Show that there is at least one pair of ants such that the distance between their heads is at least $10$ meters (consider the head of an ant as point).

2021 Centroamerican and Caribbean Math Olympiad, 5

Tags: inequalities
Let $n \geq 3$ be an integer and $a_1,a_2,...,a_n$ be positive real numbers such that $m$ is the smallest and $M$ is the largest of these numbers. It is known that for any distinct integers $1 \leq i,j,k \leq n$, if $a_i \leq a_j \leq a_k$ then $a_ia_k \leq a_j^2$. Show that \[ a_1a_2 \cdots a_n \geq m^2M^{n-2} \] and determine when equality holds

Kvant 2021, M2642

The nonzero numbers $x{}$ and $y{}$ satisfy the inequalities $x^{2n}-y^{2n}>x$ and $y^{2n}-x^{2n}>y$ for some natural number $n{}$. Can the product $xy$ be a negative number? [i]Proposed by N. Agakhanov[/i]

1982 Czech and Slovak Olympiad III A, 5

Given is a sequence of real numbers $\{a_n\}^{\infty}_{n=1}$ such that $a_n \ne a_m$ for $n\ne m,$ given is a natural number $k$. Construct an injective map $P:\{1,2,\ldots,20k\}\to\mathbb Z^+$ such that the following inequalities hold: $$a_{p(1)}<a_{p(2)}<...<a_{p(10)}$$ $$ a_{p(10)}>a_{p(11)}>...>a_{p(20)}$$ $$a_{p(20)}<a_{p(21)}<...<a_{p(30)}$$ $$...$$ $$a_{p(20k-10)}>a_{p(20k-9)}>...>a_{p(20k)}$$ $$a_{p(10)}>a_{p(30)}>...>a_{p((20k-10))} $$ $$a_{p(1)}<a_{p(20)}<...<a_{p(20k)},$$

2011 CentroAmerican, 5

If $x$, $y$, $z$ are positive numbers satisfying \[x+\frac{y}{z}=y+\frac{z}{x}=z+\frac{x}{y}=2.\] Find all the possible values of $x+y+z$.

2014 Czech and Slovak Olympiad III A, 6

Tags: inequalities
For arbitrary non-negative numbers $a$ and $b$ prove inequality $\frac{a}{\sqrt{b^2+1}}+\frac{b}{\sqrt{a^2+1}}\ge\frac{a+b}{\sqrt{ab+1}}$, and find, where equality occurs. (Day 2, 6th problem authors: Tomáš Jurík, Jaromír Šimša)

2018 China National Olympiad, 6

China Mathematical Olympiad 2018 Q6 Given the positive integer $n ,k$ $(n>k)$ and $ a_1,a_2,\cdots ,a_n\in (k-1,k)$ ,if positive number $x_1,x_2,\cdots ,x_n$ satisfying:For any set $\mathbb{I} \subseteq \{1,2,\cdots,n\}$ ,$|\mathbb{I} |=k$,have $\sum_{i\in \mathbb{I} }x_i\le \sum_{i\in \mathbb{I} }a_i$ , find the maximum value of $x_1x_2\cdots x_n.$

2017 Harvard-MIT Mathematics Tournament, 7

Tags: inequalities
Determine the largest real number $c$ such that for any $2017$ real numbers $x_1, x_2, \dots, x_{2017}$, the inequality $$\sum_{i=1}^{2016}x_i(x_i+x_{i+1})\ge c\cdot x^2_{2017}$$ holds.

2014 India IMO Training Camp, 2

For $j=1,2,3$ let $x_{j},y_{j}$ be non-zero real numbers, and let $v_{j}=x_{j}+y_{j}$.Suppose that the following statements hold: $x_{1}x_{2}x_{3}=-y_{1}y_{2}y_{3}$ $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=y_{1}^{2}+y_{2}^{2}+y_{3}^2$ $v_{1},v_{2},v_{3}$ satisfy triangle inequality $v_{1}^{2},v_{2}^{2},v_{3}^{2}$ also satisfy triangle inequality. Prove that exactly one of $x_{1},x_{2},x_{3},y_{1},y_{2},y_{3}$ is negative.

2022 Serbia JBMO TST, 1

Prove that for all positive real numbers $a$, $b$ the following inequality holds: \begin{align*} \sqrt{\frac{a^2+b^2}{2}}+\frac{2ab}{a+b}\ge \frac{a+b}{2}+ \sqrt{ab} \end{align*} When does equality hold?

1999 Bosnia and Herzegovina Team Selection Test, 2

Prove the inequality $$\frac{a^2}{b+c-a}+\frac{b^2}{a+c-b}+\frac{c^2}{a+b-c} \geq 3\sqrt{3}R$$ in triangle $ABC$ where $a$, $b$ and $c$ are sides of triangle and $R$ radius of circumcircle of $ABC$

1976 Bulgaria National Olympiad, Problem 4

Tags: inequalities
Let $0<x_1\le x_2\le\ldots\le x_n$. Prove that $$\frac{x_1}{x_2}+\frac{x_2}{x_3}+\ldots+\frac{x_{n-1}}{x_n}+\frac{x_n}{x_1}\ge\frac{x_2}{x_1}+\frac{x_3}{x_2}+\ldots+\frac{x_n}{x_{n-1}}+\frac{x_1}{x_n}$$ [i]I. Tonov[/i]

2009 Turkey MO (2nd round), 2

Show that \[ \frac{(b+c)(a^4-b^2c^2)}{ab+2bc+ca}+\frac{(c+a)(b^4-c^2a^2)}{bc+2ca+ab}+\frac{(a+b)(c^4-a^2b^2)}{ca+2ab+bc} \geq 0 \] for all positive real numbers $a, \: b , \: c.$

1968 IMO Shortlist, 5

Let $h_n$ be the apothem (distance from the center to one of the sides) of a regular $n$-gon ($n \geq 3$) inscribed in a circle of radius $r$. Prove the inequality \[(n + 1)h_n+1 - nh_n > r.\] Also prove that if $r$ on the right side is replaced with a greater number, the inequality will not remain true for all $n \geq 3.$

2009 China Girls Math Olympiad, 5

Let $ x,y,z$ be real numbers greater than or equal to $ 1.$ Prove that \[ \prod(x^{2} \minus{} 2x \plus{} 2)\le (xyz)^{2} \minus{} 2xyz \plus{} 2.\]

2003 China Team Selection Test, 1

Let $g(x)= \sum_{k=1}^{n} a_k \cos{kx}$, $a_1,a_2, \cdots, a_n, x \in R$. If $g(x) \geq -1$ holds for every $x \in R$, prove that $\sum_{k=1}^{n}a_k \leq n$.

2011 AMC 10, 25

Let $T_1$ be a triangle with sides $2011, 2012,$ and $2013$. For $n \ge 1$, if $T_n=\triangle ABC$ and $D,E,$ and $F$ are the points of tangency of the incircle of $\triangle ABC$ to the sides $AB,BC$ and $AC$, respectively, then $T_{n+1}$ is a triangle with side lengths $AD,BE,$ and $CF$, if it exists. What is the perimeter of the last triangle in the sequence $(T_n)$? $ \textbf{(A)}\ \frac{1509}{8} \qquad \textbf{(B)}\ \frac{1509}{32} \qquad \textbf{(C)}\ \frac{1509}{64} \qquad \textbf{(D)}\ \frac{1509}{128} \qquad \textbf{(E)}\ \frac{1509}{256} $

2010 Contests, 4

Tags: inequalities
Given $n$ positive real numbers satisfying $x_1 \ge x_2 \ge \cdots \ge x_n \ge 0$ and $x_1^2+x_2^2+\cdots+x_n^2=1$, prove that \[\frac{x_1}{\sqrt{1}}+\frac{x_2}{\sqrt{2}}+\cdots+\frac{x_n}{\sqrt{n}}\ge 1.\]

1991 IMO Shortlist, 27

Determine the maximum value of the sum \[ \sum_{i < j} x_ix_j (x_i \plus{} x_j) \] over all $ n \minus{}$tuples $ (x_1, \ldots, x_n),$ satisfying $ x_i \geq 0$ and $ \sum^n_{i \equal{} 1} x_i \equal{} 1.$

2018 Macedonia JBMO TST, 3

Let $x$, $y$, and $z$ be positive real numbers such that $x + y + z = 1$. Prove that $\frac{(x+y)^3}{z} + \frac{(y+z)^3}{x} + \frac{(z+x)^3}{y} + 9xyz \ge 9(xy + yz + zx)$. When does equality hold?

2024 Dutch IMO TST, 3

Let $a,b,c$ be real numbers such that $0 \le a \le b \le c$ and $a+b+c=1$. Show that \[ab\sqrt{b-a}+bc\sqrt{c-b}+ac\sqrt{c-a}<\frac{1}{4}.\]