This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 592

1992 IMO Longlists, 79

Let $ \lfloor x \rfloor$ denote the greatest integer less than or equal to $ x.$ Pick any $ x_1$ in $ [0, 1)$ and define the sequence $ x_1, x_2, x_3, \ldots$ by $ x_{n\plus{}1} \equal{} 0$ if $ x_n \equal{} 0$ and $ x_{n\plus{}1} \equal{} \frac{1}{x_n} \minus{} \left \lfloor \frac{1}{x_n} \right \rfloor$ otherwise. Prove that \[ x_1 \plus{} x_2 \plus{} \ldots \plus{} x_n < \frac{F_1}{F_2} \plus{} \frac{F_2}{F_3} \plus{} \ldots \plus{} \frac{F_n}{F_{n\plus{}1}},\] where $ F_1 \equal{} F_2 \equal{} 1$ and $ F_{n\plus{}2} \equal{} F_{n\plus{}1} \plus{} F_n$ for $ n \geq 1.$

1970 IMO, 3

The real numbers $a_0,a_1,a_2,\ldots$ satisfy $1=a_0\le a_1\le a_2\le\ldots. b_1,b_2,b_3,\ldots$ are defined by $b_n=\sum_{k=1}^n{1-{a_{k-1}\over a_k}\over\sqrt a_k}$. [b]a.)[/b] Prove that $0\le b_n<2$. [b]b.)[/b] Given $c$ satisfying $0\le c<2$, prove that we can find $a_n$ so that $b_n>c$ for all sufficiently large $n$.

2006 Federal Math Competition of S&M, Problem 1

Suppose $a,b,c,A,B,C$ are real numbers with $a\ne0$ and $A\ne0$ such that for all $x$, $$\left|ax^2+bx+c\right|\le\left|Ax^2+Bx+C\right|.$$Prove that $$\left|b^2-4ac\right|\le\left|B^2-4AC\right|.$$

2021 Silk Road, 2

For every positive integer $m$ prove the inquality $|\{\sqrt{m}\} - \frac{1}{2}| \geq \frac{1}{8(\sqrt m+1)} $ (The integer part $[x]$ of the number $x$ is the largest integer not exceeding $x$. The fractional part of the number $x$ is a number $\{x\}$ such that $[x]+\{x\}=x$.) A. Golovanov

2021 Science ON all problems, 2

$a,b,c$ are nonnegative integers that satisfy $a^2+b^2+c^2=3$. Find the minimum and maximum value the sum $$\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}$$ may achieve and find all $a,b,c$ for which equality occurs.\\ \\ [i](Andrei Bâra)[/i]

1974 IMO Longlists, 45

The sum of the squares of five real numbers $a_1, a_2, a_3, a_4, a_5$ equals $1$. Prove that the least of the numbers $(a_i - a_j)^2$, where $i, j = 1, 2, 3, 4,5$ and $i \neq j$, does not exceed $\frac{1}{10}.$

2016 Junior Balkan Team Selection Test, 4

Let $a,b,c\in \mathbb{R}^+$, prove that: $$\frac{2a}{\sqrt{3a+b}}+\frac{2b}{\sqrt{3b+c}}+\frac{2c}{\sqrt{3c+a}}\leq \sqrt{3(a+b+c)}$$

2005 Federal Math Competition of S&M, Problem 3

If $x,y,z$ are nonnegative numbers with $x+y+z=3$, prove that $$\sqrt x+\sqrt y+\sqrt z\ge xy+yz+xz.$$

2024 Balkan MO, 3

Let $a$ and $b$ be distinct positive integers such that $3^a + 2$ is divisible by $3^b + 2$. Prove that $a > b^2$. [i]Proposed by Tynyshbek Anuarbekov, Kazakhstan[/i]

2021 Saudi Arabia IMO TST, 11

Suppose that $a,b,c,d$ are positive real numbers satisfying $(a+c)(b+d)=ac+bd$. Find the smallest possible value of $$\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}.$$ [i]Israel[/i]

2010 IMO Shortlist, 3

Let $A_1A_2 \ldots A_n$ be a convex polygon. Point $P$ inside this polygon is chosen so that its projections $P_1, \ldots , P_n$ onto lines $A_1A_2, \ldots , A_nA_1$ respectively lie on the sides of the polygon. Prove that for arbitrary points $X_1, \ldots , X_n$ on sides $A_1A_2, \ldots , A_nA_1$ respectively, \[\max \left\{ \frac{X_1X_2}{P_1P_2}, \ldots, \frac{X_nX_1}{P_nP_1} \right\} \geq 1.\] [i]Proposed by Nairi Sedrakyan, Armenia[/i]

2023 Junior Balkan Mathematical Olympiad, 2

Tags: inequality
Prove that for all non-negative real numbers $x,y,z$, not all equal to $0$, the following inequality holds $\displaystyle \dfrac{2x^2-x+y+z}{x+y^2+z^2}+\dfrac{2y^2+x-y+z}{x^2+y+z^2}+\dfrac{2z^2+x+y-z}{x^2+y^2+z}\geq 3.$ Determine all the triples $(x,y,z)$ for which the equality holds. [i]Milan Mitreski, Serbia[/i]

2021 Taiwan TST Round 2, A

[i]Version 1[/i]. Let $n$ be a positive integer, and set $N=2^{n}$. Determine the smallest real number $a_{n}$ such that, for all real $x$, \[ \sqrt[N]{\frac{x^{2 N}+1}{2}} \leqslant a_{n}(x-1)^{2}+x . \] [i]Version 2[/i]. For every positive integer $N$, determine the smallest real number $b_{N}$ such that, for all real $x$, \[ \sqrt[N]{\frac{x^{2 N}+1}{2}} \leqslant b_{N}(x-1)^{2}+x . \]

2018 Tajikistan Team Selection Test, 4

Problem 4. Let a,b be positive real numbers and let x,y be positive real numbers less than 1, such that: a/(1-x)+b/(1-y)=1 Prove that: ∛ay+∛bx≤1.

2014 Contests, 1

Let $x,y$ and $z$ be positive real numbers such that $xy+yz+xz=3xyz$. Prove that \[ x^2y+y^2z+z^2x \ge 2(x+y+z)-3 \] and determine when equality holds. [i]UK - David Monk[/i]

2022 Baltic Way, 4

The positive real numbers $x,y,z$ satisfy $xy+yz+zx=1$. Prove that: $$ 2(x^2+y^2+z^2)+\frac{4}{3}\bigg (\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\bigg) \ge 5 $$

2010 IMO Shortlist, 4

A sequence $x_1, x_2, \ldots$ is defined by $x_1 = 1$ and $x_{2k}=-x_k, x_{2k-1} = (-1)^{k+1}x_k$ for all $k \geq 1.$ Prove that $\forall n \geq 1$ $x_1 + x_2 + \ldots + x_n \geq 0.$ [i]Proposed by Gerhard Wöginger, Austria[/i]

1994 All-Russian Olympiad, 5

Prove that, for any natural numbers $k,m,n$: $[k,m] \cdot [m,n] \cdot [n,k] \ge [k,m,n]^2$

1991 IMO Shortlist, 25

Suppose that $ n \geq 2$ and $ x_1, x_2, \ldots, x_n$ are real numbers between 0 and 1 (inclusive). Prove that for some index $ i$ between $ 1$ and $ n \minus{} 1$ the inequality \[ x_i (1 \minus{} x_{i\plus{}1}) \geq \frac{1}{4} x_1 (1 \minus{} x_{n})\]

Russian TST 2016, P1

For which even natural numbers $d{}$ does there exists a constant $\lambda>0$ such that any reduced polynomial $f(x)$ of degree $d{}$ with integer coefficients that does not have real roots satisfies the inequality $f(x) > \lambda$ for all real numbers?

1988 IMO Shortlist, 16

Show that the solution set of the inequality \[ \sum^{70}_{k \equal{} 1} \frac {k}{x \minus{} k} \geq \frac {5}{4} \] is a union of disjoint intervals, the sum of whose length is 1988.

1994 All-Russian Olympiad Regional Round, 11.1

Prove that for all $x \in \left( 0, \frac{\pi}{3} \right)$ inequality $sin2x+cosx>1$ holds.

2021 Latvia TST, 2.5

Suppose that $a,b,c,d$ are positive real numbers satisfying $(a+c)(b+d)=ac+bd$. Find the smallest possible value of $$\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}.$$ [i]Israel[/i]

2021 Indonesia TST, A

A positive real $M$ is $strong$ if for any positive reals $a$, $b$, $c$ satisfying $$ \text{max}\left\{ \frac{a}{b+c} , \frac{b}{c+a} , \frac{c}{a+b} \right\} \geqslant M $$ then the following inequality holds: $$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} > 20.$$ (a) Prove that $M=20-\frac{1}{20}$ is not $strong$. (b) Prove that $M=20-\frac{1}{21}$ is $strong$.

2015 Bosnia And Herzegovina - Regional Olympiad, 2

Let $a$, $b$ and $c$ be positive real numbers such that $abc=2015$. Prove that $$\frac{a+b}{a^2+b^2}+\frac{b+c}{b^2+c^2}+\frac{c+a}{c^2+a^2} \leq \frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{2015}}$$