This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 592

2020 Baltic Way, 2

Let $a, b, c$ be positive real numbers such that $abc = 1$. Prove that $$\frac{1}{a\sqrt{c^2 + 1}} + \frac{1}{b\sqrt{a^2 + 1}} + \frac{1}{c\sqrt{b^2+1}} > 2.$$

2023 Tuymaada Olympiad, 1

Prove that for $a, b, c \in [0;1]$, $$(1-a)(1+ab)(1+ac)(1-abc) \leq (1+a)(1-ab)(1-ac)(1+abc).$$

1967 IMO Shortlist, 5

Prove that for an arbitrary pair of vectors $f$ and $g$ in the space the inequality \[af^2 + bfg +cg^2 \geq 0\] holds if and only if the following conditions are fulfilled: \[a \geq 0, \quad c \geq 0, \quad 4ac \geq b^2.\]

1971 IMO Longlists, 52

Prove the inequality \[ \frac{a_1+ a_3}{a_1 + a_2} + \frac{a_2 + a_4}{a_2 + a_3} + \frac{a_3 + a_1}{a_3 + a_4} + \frac{a_4 + a_2}{a_4 + a_1} \geq 4, \] where $a_i > 0, i = 1, 2, 3, 4.$

2021-IMOC, A8

Find all functions $f : \mathbb{N} \to \mathbb{N}$ with $$f(x) + yf(f(x)) < x(1 + f(y)) + 2021$$ holds for all positive integers $x,y.$

2021 Thailand TST, 1

[i]Version 1[/i]. Let $n$ be a positive integer, and set $N=2^{n}$. Determine the smallest real number $a_{n}$ such that, for all real $x$, \[ \sqrt[N]{\frac{x^{2 N}+1}{2}} \leqslant a_{n}(x-1)^{2}+x . \] [i]Version 2[/i]. For every positive integer $N$, determine the smallest real number $b_{N}$ such that, for all real $x$, \[ \sqrt[N]{\frac{x^{2 N}+1}{2}} \leqslant b_{N}(x-1)^{2}+x . \]

1975 IMO, 1

We consider two sequences of real numbers $x_{1} \geq x_{2} \geq \ldots \geq x_{n}$ and $\ y_{1} \geq y_{2} \geq \ldots \geq y_{n}.$ Let $z_{1}, z_{2}, .\ldots, z_{n}$ be a permutation of the numbers $y_{1}, y_{2}, \ldots, y_{n}.$ Prove that $\sum \limits_{i=1}^{n} ( x_{i} -\ y_{i} )^{2} \leq \sum \limits_{i=1}^{n}$ $( x_{i} - z_{i})^{2}.$

2007 Junior Macedonian Mathematical Olympiad, 3

Let $a$, $b$, $c$ be real numbers such that $0 < a \le b \le c$. Prove that $(a + 3b)(b + 4c)(c + 2a) \ge 60abc$. When does equality hold?

1967 IMO Shortlist, 3

Prove that for arbitrary positive numbers the following inequality holds \[\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \leq \frac{a^8 + b^8 + c^8}{a^3b^3c^3}.\]

1966 IMO Shortlist, 33

Given two internally tangent circles; in the bigger one we inscribe an equilateral triangle. From each of the vertices of this triangle, we draw a tangent to the smaller circle. Prove that the length of one of these tangents equals the sum of the lengths of the two other tangents.

1970 IMO Longlists, 52

The real numbers $a_0,a_1,a_2,\ldots$ satisfy $1=a_0\le a_1\le a_2\le\ldots. b_1,b_2,b_3,\ldots$ are defined by $b_n=\sum_{k=1}^n{1-{a_{k-1}\over a_k}\over\sqrt a_k}$. [b]a.)[/b] Prove that $0\le b_n<2$. [b]b.)[/b] Given $c$ satisfying $0\le c<2$, prove that we can find $a_n$ so that $b_n>c$ for all sufficiently large $n$.

1979 IMO Shortlist, 19

Consider the sequences $(a_n), (b_n)$ defined by \[a_1=3, \quad b_1=100 , \quad a_{n+1}=3^{a_n} , \quad b_{n+1}=100^{b_n} \] Find the smallest integer $m$ for which $b_m > a_{100}.$

2016 IMO Shortlist, A3

Find all positive integers $n$ such that the following statement holds: Suppose real numbers $a_1$, $a_2$, $\dots$, $a_n$, $b_1$, $b_2$, $\dots$, $b_n$ satisfy $|a_k|+|b_k|=1$ for all $k=1,\dots,n$. Then there exists $\varepsilon_1$, $\varepsilon_2$, $\dots$, $\varepsilon_n$, each of which is either $-1$ or $1$, such that \[ \left| \sum_{i=1}^n \varepsilon_i a_i \right| + \left| \sum_{i=1}^n \varepsilon_i b_i \right| \le 1. \]

2019 South East Mathematical Olympiad, 1

Find the largest real number $k$, such that for any positive real numbers $a,b$, $$(a+b)(ab+1)(b+1)\geq kab^2$$

2010 Junior Balkan Team Selection Tests - Romania, 3

Let $a, b, c$ be real numbers with the property as $ab + bc + ca = 1$. Show that: $$\frac {(a + b) ^ 2 + 1} {c ^ 2 + 2} + \frac {(b + c) ^ 2 + 1} {a ^ 2 + 2} + \frac {(c + a) ^ 2 + 1} {b ^ 2 + 2} \ge 3 $$.

2012 Greece Team Selection Test, 3

Let $a,b,c$ be positive real numbers satisfying $a+b+c=3$.Prove that $\sum_{sym} \frac{a^{2}}{(b+c)^{3}}\geq \frac{3}{8}$

1994 Korea National Olympiad, Problem 2

Let $ \alpha,\beta,\gamma$ be the angles of a triangle. Prove that $csc^2\frac{\alpha}{2}+csc^2\frac{\beta}{2}+csc^2\frac{\gamma}{2} \ge 12$ and find the conditions for equality.

2017 JBMO Shortlist, A1

Let $a, b, c$ be positive real numbers such that $a + b + c + ab + bc + ca + abc = 7$. Prove that $\sqrt{a^2 + b^2 + 2 }+\sqrt{b^2 + c^2 + 2 }+\sqrt{c^2 + a^2 + 2 } \ge 6$ .

2018 Brazil National Olympiad, 1

We say that a polygon $P$ is [i]inscribed[/i] in another polygon $Q$ when all vertices of $P$ belong to perimeter of $Q$. We also say in this case that $Q$ is [i]circumscribed[/i] to $P$. Given a triangle $T$, let $l$ be the maximum value of the side of a square inscribed in $T$ and $L$ be the minimum value of the side of a square circumscribed to $T$. Prove that for every triangle $T$ the inequality $L/l \ge 2$ holds and find all the triangles $T$ for which the equality occurs.

2014 JBMO Shortlist, 3

For positive real numbers $a,b,c$ with $abc=1$ prove that $\left(a+\frac{1}{b}\right)^{2}+\left(b+\frac{1}{c}\right)^{2}+\left(c+\frac{1}{a}\right)^{2}\geq 3(a+b+c+1)$

2025 NEPALTST, 1

Let the sequence $\{a_n\}_{n \geq 1}$ be defined by \[ a_1 = 1, \quad a_{n+1} = a_n + \frac{1}{\sqrt[2024]{a_n}} \quad \text{for } n \geq 1, \, n \in \mathbb{N} \] Prove that \[ a_n^{2025} >n^{2024} \] for all positive integers $n \geq 2$. $\textbf{Proposed by Prajit Adhikari, Nepal.}$

2016 Balkan MO Shortlist, A1

Let $a, b,c$ be positive real numbers. Prove that $ \sqrt{a^3b+a^3c}+\sqrt{b^3c+b^3a}+\sqrt{c^3a+c^3b}\ge \frac43 (ab+bc+ca)$

2004 Croatia National Olympiad, Problem 1

Let $z_1,\ldots,z_n$ and $w_1,\ldots,w_n$ $(n\in\mathbb N)$ be complex numbers such that $$|\epsilon_1z_1+\ldots+\epsilon_nz_n|\le|\epsilon_1w_1+\ldots+\epsilon_nw_n|$$holds for every choice of $\epsilon_1,\ldots,\epsilon_n\in\{-1,1\}$. Prove that $$|z_1|^2+\ldots+|z_n|^2\le|w_1|^2+\ldots+|w_n|^2.$$

2016 Bosnia And Herzegovina - Regional Olympiad, 1

Find minimal value of $A=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2}{\left(x+\frac{1}{x}\right)^3+\left(x^3+\frac{1}{x^3}\right)}$

1985 IMO, 3

For any polynomial $P(x)=a_0+a_1x+\ldots+a_kx^k$ with integer coefficients, the number of odd coefficients is denoted by $o(P)$. For $i-0,1,2,\ldots$ let $Q_i(x)=(1+x)^i$. Prove that if $i_1,i_2,\ldots,i_n$ are integers satisfying $0\le i_1<i_2<\ldots<i_n$, then: \[ o(Q_{i_1}+Q_{i_2}+\ldots+Q_{i_n})\ge o(Q_{i_1}). \]