This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1687

2010 Today's Calculation Of Integral, 656

Find $\lim_{n\to\infty} n\int_0^{\frac{\pi}{2}} \frac{1}{(1+\cos x)^n}dx\ (n=1,\ 2,\ \cdots).$

2010 Gheorghe Vranceanu, 2

Let be a natural number $ n, $ a nonzero number $ \alpha, \quad n $ numbers $ a_1,a_2,\ldots ,a_n $ and $ n+1 $ functions $ f_0,f_1,f_2,\ldots ,f_n $ such that $ f_0=\alpha $ and the rest are defined recursively as $$ f_k (x)=a_k+\int_0^x f_{k-1} (x)dx . $$ Prove that if all these functions are everywhere nonnegative, then the sum of all these functions is everywhere nonnegative.

2005 AMC 12/AHSME, 11

How many three-digit numbers satisfy the property that the middle digit is the average of the first and the last digits? $ \textbf{(A)}\ 41\qquad \textbf{(B)}\ 42\qquad \textbf{(C)}\ 43\qquad \textbf{(D)}\ 44\qquad \textbf{(E)}\ 45$

2010 Today's Calculation Of Integral, 649

Let $f_n(x,\ y)=\frac{n}{r\cos \pi r+n^2r^3}\ (r=\sqrt{x^2+y^2})$, $I_n=\int\int_{r\leq 1} f_n(x,\ y)\ dxdy\ (n\geq 2).$ Find $\lim_{n\to\infty} I_n.$ [i]2009 Tokyo Institute of Technology, Master Course in Mathematics[/i]

2019 Jozsef Wildt International Math Competition, W. 48

Let $f : (0,+\infty) \to \mathbb{R}$ a convex function and $\alpha, \beta, \gamma > 0$. Then $$\frac{1}{6\alpha}\int \limits_0^{6\alpha}f(x)dx\ +\ \frac{1}{6\beta}\int \limits_0^{6\beta}f(x)dx\ +\ \frac{1}{6\gamma}\int \limits_0^{6\gamma}f(x)dx$$ $$\geq \frac{1}{3\alpha +2\beta +\gamma}\int \limits_0^{3\alpha +2\beta +\gamma}f(x)dx\ +\ \frac{1}{\alpha +3\beta +2\gamma}\int \limits_0^{\alpha +3\beta +2\gamma}f(x)dx\ $$ $$+\ \frac{1}{2\alpha +\beta +3\gamma}\int \limits_0^{2\alpha +\beta +3\gamma}f(x)dx$$

2005 Brazil Undergrad MO, 6

Prove that for any natural numbers $0 \leq i_1 < i_2 < \cdots < i_k$ and $0 \leq j_1 < j_2 < \cdots < j_k$, the matrix $A = (a_{rs})_{1\leq r,s\leq k}$, $a_{rs} = {i_r + j_s\choose i_r} = {(i_r + j_s)!\over i_r!\, j_s!}$ ($1\leq r,s\leq k$) is nonsingular.

1991 Arnold's Trivium, 1

Sketch the graph of the derivative and the graph of the integral of a function given by a free-hand graph.

2005 Today's Calculation Of Integral, 13

Calculate the following integarls. [1] $\int x\cos ^ 2 x dx$ [2] $\int \frac{x-1}{(3x-1)^2}dx$ [3] $\int \frac{x^3}{(2-x^2)^4}dx$ [4] $\int \left({\frac{1}{4\sqrt{x}}+\frac{1}{2x}}\right)dx$ [5] $\int (\ln x)^2 dx$

2007 Today's Calculation Of Integral, 181

For real number $a,$ find the minimum value of $\int_{0}^{\frac{\pi}{2}}\left|\frac{\sin 2x}{1+\sin^{2}x}-a\cos x\right| dx.$

2011 Today's Calculation Of Integral, 760

Prove that there exists a positive integer $n$ such that $\int_0^1 x\sin\ (x^2-x+1)dx\geq \frac {n}{n+1}\sin \frac{n+2}{n+3}.$

2005 Today's Calculation Of Integral, 25

Let $|a|<\frac{\pi}{2}$. Evaluate \[\int_0^{\frac{\pi}{2}} \frac{dx}{\{\sin (a+x)+\cos x\}^2}\]

2023 Bangladesh Mathematical Olympiad, P5

Consider an integrable function $f:\mathbb{R} \rightarrow \mathbb{R}$ such that $af(a)+bf(b)=0$ when $ab=1$. Find the value of the following integration: $$ \int_{0}^{\infty} f(x) \,dx $$

Today's calculation of integrals, 882

Find $\lim_{n\to\infty} \sum_{k=1}^n \frac{1}{n+k}(\ln (n+k)-\ln\ n)$.

2010 Princeton University Math Competition, 4

Define $\displaystyle{f(x) = x + \sqrt{x + \sqrt{x + \sqrt{x + \sqrt{x + \ldots}}}}}$. Find the smallest integer $x$ such that $f(x)\ge50\sqrt{x}$. (Edit: The official question asked for the "smallest integer"; the intended question was the "smallest positive integer".)

2003 Flanders Math Olympiad, 4

Consider all points with integer coordinates in the carthesian plane. If one draws a circle with M(0,0) and a well-chose radius r, the circles goes through some of those points. (like circle with $r=2\sqrt2$ goes through 4 points) Prove that $\forall n\in \mathbb{N}, \exists r$ so that the circle with midpoint 0,0 and radius $r$ goes through at least $n$ points.

1999 Mexico National Olympiad, 6

A polygon has each side integral and each pair of adjacent sides perpendicular (it is not necessarily convex). Show that if it can be covered by non-overlapping $2 x 1$ dominos, then at least one of its sides has even length.

1997 AMC 12/AHSME, 21

For any positive integer $ n$, let \[f(n) \equal{} \begin{cases} \log_8{n}, & \text{if }\log_8{n}\text{ is rational,} \\ 0, & \text{otherwise.} \end{cases}\] What is $ \sum_{n \equal{} 1}^{1997}{f(n)}$? $ \textbf{(A)}\ \log_8{2047}\qquad \textbf{(B)}\ 6\qquad \textbf{(C)}\ \frac {55}{3}\qquad \textbf{(D)}\ \frac {58}{3}\qquad \textbf{(E)}\ 585$

2014 District Olympiad, 1

For each positive integer $n$ we consider the function $f_{n}:[0,n]\rightarrow{\mathbb{R}}$ defined by $f_{n}(x)=\arctan{\left(\left\lfloor x\right\rfloor \right)} $, where $\left\lfloor x\right\rfloor $ denotes the floor of the real number $x$. Prove that $f_{n}$ is a Riemann Integrable function and find $\underset{n\rightarrow\infty}{\lim}\frac{1}{n}\int_{0}^{n}f_{n}(x)\mathrm{d}x.$

1940 Putnam, A3

Let $a$ be a real number. Find all real-valued functions $f$ such that $$\int f(x)^{a} dx=\left( \int f(x) dx \right)^{a}$$ when constants of integration are suitably chosen.

2011 Today's Calculation Of Integral, 721

For constant $a$, find the differentiable function $f(x)$ satisfying $\int_0^x (e^{-x}-ae^{-t})f(t)dt=0$.

2009 Vietnam National Olympiad, 4

Let $ a$, $ b$, $ c$ be three real numbers. For each positive integer number $ n$, $ a^n \plus{} b^n \plus{} c^n$ is an integer number. Prove that there exist three integers $ p$, $ q$, $ r$ such that $ a$, $ b$, $ c$ are the roots of the equation $ x^3 \plus{} px^2 \plus{} qx \plus{} r \equal{} 0$.

1992 Cono Sur Olympiad, 1

Prove that there aren't any positive integrer numbers $x,y,z$ such that $x^2+y^2=3z^2$.

2012 Putnam, 6

Let $f(x,y)$ be a continuous, real-valued function on $\mathbb{R}^2.$ Suppose that, for every rectangular region $R$ of area $1,$ the double integral of $f(x,y)$ over $R$ equals $0.$ Must $f(x,y)$ be identically $0?$

Today's calculation of integrals, 869

Let $I_n=\frac{1}{n+1}\int_0^{\pi} x(\sin nx+n\pi\cos nx)dx\ \ (n=1,\ 2,\ \cdots).$ Answer the questions below. (1) Find $I_n.$ (2) Find $\sum_{n=1}^{\infty} I_n.$

2000 Moldova National Olympiad, Problem 6

Show that there is a positive number $p$ such that $\int^\pi_0x^p\sin xdx=\sqrt[10]{2000}$.