This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1687

2011 Today's Calculation Of Integral, 694

Prove the following inequality: \[\int_1^e \frac{(\ln x)^{2009}}{x^2}dx>\frac{1}{2010\cdot 2011\cdot2012}\] created by kunny

2006 Australia National Olympiad, 2

Let $f$ be a function defined on the positive integers, taking positive integral values, such that $f(a)f(b) = f(ab)$ for all positive integers $a$ and $b$, $f(a) < f(b)$ if $a < b$, $f(3) \geq 7$. Find the smallest possible value of $f(3)$.

2011 Today's Calculation Of Integral, 686

Let $L$ be a positive constant. For a point $P(t,\ 0)$ on the positive part of the $x$ axis on the coordinate plane, denote $Q(u(t),\ v(t))$ the point at which the point reach starting from $P$ proceeds by distance $L$ in counter-clockwise on the perimeter of a circle passing the point $P$ with center $O$. (1) Find $u(t),\ v(t)$. (2) For real number $a$ with $0<a<1$, find $f(a)=\int_a^1 \sqrt{\{u'(t)\}^2+\{v'(t)\}^2}\ dt$. (3) Find $\lim_{a\rightarrow +0} \frac{f(a)}{\ln a}$. [i]2011 Tokyo University entrance exam/Science, Problem 3[/i]

2024 Romania National Olympiad, 3

Let $f:[0,1] \to \mathbb{R}$ be a continuous function with $f(1)=0.$ Prove that the limit $$\lim_{t \nearrow 1} \left( \frac{1}{1-t} \int\limits_0^1x(f(tx)-f(x)) \mathrm{d}x\right)$$ exists and find its value.

2011 Today's Calculation Of Integral, 709

Evaluate $ \int_0^1 \frac{x}{1\plus{}x}\sqrt{1\minus{}x^2}\ dx$.

2013 Today's Calculation Of Integral, 896

Given sequences $a_n=\frac{1}{n}{\sqrt[n] {_{2n}P_n}},\ b_n=\frac{1}{n^2}{\sqrt[n] {_{4n}P_{2n}}}$ and $c_n=\sqrt[n]{\frac{_{8n}P_{4n}}{_{6n}P_{4n}}}$, find $\lim_{n\to\infty} a_n,\ \lim_{n\to\infty} b_n$and $\lim_{n\to\infty} c_n.$

1991 Arnold's Trivium, 80

Solve the equation \[\int_0^1(x+y)^2u(x)dx=\lambda u(y)+1\]

1999 Polish MO Finals, 2

Prove that for any $ 2n$ real numbers $ a_{1}$, $ a_{2}$, ..., $ a_{n}$, $ b_{1}$, $ b_{2}$, ..., $ b_{n}$, we have $ \sum_{i < j}{\left|a_{i}\minus{}a_{j}\right|}\plus{}\sum_{i < j}{\left|b_{i}\minus{}b_{j}\right|}\leq\sum_{i,j\in\left[1,n\right]}{\left|a_{i}\minus{}b_{j}\right|}$.

2006 Putnam, A6

Four points are chosen uniformly and independently at random in the interior of a given circle. Find the probability that they are the vertices of a convex quadrilateral.

2010 Today's Calculation Of Integral, 589

Evaluate $ \int_0^1 \frac{x}{\{(2x\minus{}1)\sqrt{x^2\plus{}x\plus{}1}\plus{}(2x\plus{}1)\sqrt{x^2\minus{}x\plus{}1}\}\sqrt{x^4\plus{}x^2\plus{}1}}\ dx$.

2010 Today's Calculation Of Integral, 622

For $0<k<2$, consider two curves $C_1: y=\sin 2x\ (0\leq x\leq \pi),\ C_2: y=k\cos x\ (0\leqq x\leqq \pi).$ Denote by $S(k)$ the sum of the areas of four parts enclosed by $C_1,\ C_2$ and two lines $x=0,\ x=\pi$. Find the minimum value of $S(k).$ [i]2010 Nagoya Institute of Technology entrance exam[/i]

2011 Today's Calculation Of Integral, 725

For $a>1$, evaluate $\int_{\frac{1}{a}}^a \frac{1}{x}(\ln x)\ln\ (x^2+1)dx.$

2009 Today's Calculation Of Integral, 421

Let $ f(x) \equal{} e^{(p \plus{} 1)x} \minus{} e^x$ for real number $ p > 0$. Answer the following questions. (1) Find the value of $ x \equal{} s_p$ for which $ f(x)$ is minimal and draw the graph of $ y \equal{} f(x)$. (2) Let $ g(t) \equal{} \int_t^{t \plus{} 1} f(x)e^{t \minus{} x}\ dx$. Find the value of $ t \equal{} t_p$ for which $ g(t)$ is minimal. (3) Use the fact $ 1 \plus{} \frac {p}{2}\leq \frac {e^p \minus{} 1}{p}\leq 1 \plus{} \frac {p}{2} \plus{} p^2\ (0 < p\leq 1)$ to find the limit $ \lim_{p\rightarrow \plus{}0} (t_p \minus{} s_p)$.

2009 Today's Calculation Of Integral, 404

Evaluate $ \int_{ \minus{} \pi}^{\pi} \frac {\sin nx}{(1 \plus{} 2009^x)\sin x}\ dx\ (n\equal{}0,\ 1,\ 2,\ \cdots)$.

1982 Putnam, B2

Let $A(x,y)$ be the number of points $(m,n)$ in the plane with integer coordinates $m$ and $n$ satisfying $m^2+n^2\le x^2+y^2$. Let $g=\sum_{k=1}^\infty e^{-k^2}$. Express $$\int^\infty_{-\infty}\int^\infty_{-\infty}A(x,y)e^{-x^2-y^2}dxdy$$ as a polynomial in $g$.

2019 Jozsef Wildt International Math Competition, W. 27

Find all continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that$$f(-x)+\int \limits_0^xtf(x-t)dt=x,\ \forall\ x\in \mathbb{R}$$

1964 Putnam, A2

Find all continuous positive functions $f(x)$, for $0\leq x \leq 1$, such that $$\int_{0}^{1} f(x)\; dx =1, $$ $$\int_{0}^{1} xf(x)\; dx =\alpha,$$ $$\int_{0}^{1} x^2 f(x)\; dx =\alpha^2, $$ where $\alpha$ is a given real number.

1984 Vietnam National Olympiad, 1

$(a)$ Find a polynomial with integer coefficients of the smallest degree having $\sqrt{2} + \sqrt[3]{3}$ as a root. $(b)$ Solve $1 +\sqrt{1 + x^2}(\sqrt{(1 + x)^3}-\sqrt{(1- x)^3}) = 2\sqrt{1 - x^2}$.

2005 Today's Calculation Of Integral, 74

$p,q$ satisfies $px+q\geq \ln x$ at $a\leq x\leq b\ (0<a<b)$. Find the value of $p,q$ for which the following definite integral is minimized and then the minimum value. \[\int_a^b (px+q-\ln x)dx\]

2011 Today's Calculation Of Integral, 736

Evaluate \[\int_0^1 \frac{(e^x+1)\{e^x+1+(1+x+e^x)\ln (1+x+e^x)\}}{1+x+e^x}\ dx\]

2010 Today's Calculation Of Integral, 534

Find the indefinite integral $ \int \frac{x^3}{(x\minus{}1)^3(x\minus{}2)}\ dx$.

2011 Bogdan Stan, 3

Find all Riemann integrable functions $ f:\mathbb{R}\longrightarrow\mathbb{R} $ which have the property that, for all nonconstant and continuous functions $ g:\mathbb{R}\longrightarrow\mathbb{R}, $ and all real numbers $ a,b $ such that $ a<b, $ the following equality holds. $$ \int_a^b \left( f\circ g \right) (x)dx=\int_a^b \left( g\circ f \right) (x)dx $$ [i]Cosmin Nițu[/i]

2011 Today's Calculation Of Integral, 681

Evaluate $\int_0^{\frac{\pi}{2}} \sqrt{1-2\sin 2x+3\cos ^ 2 x}\ dx.$ [i]2011 University of Occupational and Environmental Health/Medicine entrance exam[/i]

1980 IMO, 18

Do there exist $\{x,y\}\in\mathbb{Z}$ satisfying $(2x+1)^{3}+1=y^{4}$?

2009 Today's Calculation Of Integral, 425

The coordinate of $ P$ at time $ t$, moving on a plane, is expressed by $ x = f(t) = \cos 2t + t\sin 2t,\ y = g(t) = \sin 2t - t\cos 2t$. (1) Find the acceleration vector $ \overrightarrow{\alpha}$ of $ P$ at time $ t$ . (2) Let $ L$ denote the line passing through the point $ P$ for the time $ t%Error. "neqo" is a bad command. $, which is parallel to the acceleration vector $ \overrightarrow{\alpha}$ at the time. Prove that $ L$ always touches to the unit circle with center the origin, then find the point of tangency $ Q$. (3) Prove that $ f(t)$ decreases in the interval $ 0\leq t \leqq \frac {\pi}{2}$. (4) When $ t$ varies in the range $ \frac {\pi}{4}\leq t\leq \frac {\pi}{2}$, find the area $ S$ of the figure formed by moving the line segment $ PQ$.