Found problems: 1687
Today's calculation of integrals, 875
Evaluate $\int_0^1 \frac{x^2+x+1}{x^4+x^3+x^2+x+1}\ dx.$
2010 IMC, 1
Let $0 < a < b$. Prove that
$\int_a^b (x^2+1)e^{-x^2} dx \geq e^{-a^2} - e^{-b^2}$.
2009 IMS, 3
Let $ A\subset \mathbb C$ be a closed and countable set. Prove that if the analytic function $ f: \mathbb C\backslash A\longrightarrow \mathbb C$ is bounded, then $ f$ is constant.
2011 Today's Calculation Of Integral, 750
Let $a_n\ (n\geq 1)$ be the value for which $\int_x^{2x} e^{-t^n}dt\ (x\geq 0)$ is maximal. Find $\lim_{n\to\infty} \ln a_n.$
2007 Today's Calculation Of Integral, 191
(1) For integer $n=0,\ 1,\ 2,\ \cdots$ and positive number $a_{n},$ let $f_{n}(x)=a_{n}(x-n)(n+1-x).$ Find $a_{n}$ such that the curve $y=f_{n}(x)$ touches to the curve $y=e^{-x}.$
(2) For $f_{n}(x)$ defined in (1), denote the area of the figure bounded by $y=f_{0}(x), y=e^{-x}$ and the $y$-axis by $S_{0},$ for $n\geq 1,$ the area of the figure bounded by $y=f_{n-1}(x),\ y=f_{n}(x)$ and $y=e^{-x}$ by $S_{n}.$ Find $\lim_{n\to\infty}(S_{0}+S_{1}+\cdots+S_{n}).$
Today's calculation of integrals, 881
Evaluate $\int_{-\pi}^{\pi} \left(\sum_{k=1}^{2013} \sin kx\right)^2dx$.
2002 Tuymaada Olympiad, 4
A real number $a$ is given. The sequence $n_{1}< n_{2}< n_{3}< ...$ consists of all the positive integral $n$ such that $\{na\}< \frac{1}{10}$. Prove that there are at most three different numbers among the numbers $n_{2}-n_{1}$, $n_{3}-n_{2}$, $n_{4}-n_{3}$, $\ldots$.
[i]A corollary of a theorem from ergodic theory[/i]
1991 Arnold's Trivium, 21
Find the derivative of the solution of the equation $\ddot{x} = \dot{x}^2 + x^3$ with initial condition $x(0) = 0$, $\dot{x}(0) = A$ with respect to $A$ for $A = 0$.
2004 Putnam, A6
Suppose that $f(x,y)$ is a continuous real-valued function on the unit square $0\le x\le1,0\le y\le1.$ Show that
$\int_0^1\left(\int_0^1f(x,y)dx\right)^2dy + \int_0^1\left(\int_0^1f(x,y)dy\right)^2dx$
$\le\left(\int_0^1\int_0^1f(x,y)dxdy\right)^2 + \int_0^1\int_0^1\left[f(x,y)\right]^2dxdy.$
Today's calculation of integrals, 887
For the function $f(x)=\int_0^x \frac{dt}{1+t^2}$, answer the questions as follows.
Note : Please solve the problems without using directly the formula $\int \frac{1}{1+x^2}\ dx=\tan^{-1}x +C$ for Japanese High School students those who don't study arc sin x, arc cos x, arc tanx.
(1) Find $f(\sqrt{3})$
(2) Find $\int_0^{\sqrt{3}} xf(x)\ dx$
(3) Prove that for $x>0$. $f(x)+f\left(\frac{1}{x}\right)$ is constant, then find the value.
2009 Today's Calculation Of Integral, 439
Find the volume of the solid defined by the inequality $ x^2 \plus{} y^2 \plus{} \ln (1 \plus{} z^2)\leq \ln 2$.
Note that you may not directively use double integral here for Japanese high school students who don't study it.
Today's calculation of integrals, 888
In the coordinate plane, given a circle $K: x^2+y^2=1,\ C: y=x^2-2$. Let $l$ be the tangent line of $K$ at $P(\cos \theta,\ \sin \theta)\ (\pi<\theta <2\pi).$ Find the minimum area of the part enclosed by $l$ and $C$.
2007 Today's Calculation Of Integral, 244
A quartic funtion $ y \equal{} ax^4 \plus{} bx^3 \plus{} cx^2 \plus{} dx\plus{}e\ (a\neq 0)$ touches the line $ y \equal{} px \plus{} q$ at $ x \equal{} \alpha ,\ \beta \ (\alpha < \beta ).$ Find the area of the region bounded by these graphs in terms of $ a,\ \alpha ,\ \beta$.
2005 Postal Coaching, 24
Find all nonnegative integers $x,y$ such that \[ 2 \cdot 3^{x} +1 = 7 \cdot 5^{y}. \]
2015 VJIMC, 4
[b]Problem 4[/b]
Find all continuously differentiable functions $ f : \mathbb{R} \rightarrow \mathbb{R} $, such that for every $a \geq 0$ the following
relation holds:
$$\iiint \limits_{D(a)} xf \left( \frac{ay}{\sqrt{x^2+y^2}} \right) \ dx \ dy\ dz = \frac{\pi a^3}{8} (f(a) + \sin a -1)\ , $$
where $D(a) = \left\{ (x,y,z)\ :\ x^2+y^2+z^2 \leq a^2\ , \ |y|\leq \frac{x}{\sqrt{3}} \right\}\ .$
2007 Today's Calculation Of Integral, 220
Prove that $ \frac{\pi}{2}\minus{}1<\int_{0}^{1}e^{\minus{}2x^{2}}\ dx$.
2012 Today's Calculation Of Integral, 771
(1) Find the range of $a$ for which there exist two common tangent lines of the curve $y=\frac{8}{27}x^3$ and the parabola $y=(x+a)^2$ other than the $x$ axis.
(2) For the range of $a$ found in the previous question, express the area bounded by the two tangent lines and the parabola $y=(x+a)^2$ in terms of $a$.
2013 VJIMC, Problem 4
Let $\mathcal F$ be the set of all continuous functions $f:[0,1]\to\mathbb R$ with the property
$$\left|\int^x_0\frac{f(t)}{\sqrt{x-t}}\text dt\right|\le1\enspace\text{for all }x\in(0,1].$$Compute $\sup_{f\in\mathcal F}\left|\int^1_0f(x)\text dx\right|$.
2008 Harvard-MIT Mathematics Tournament, 1
How many different values can $ \angle ABC$ take, where $ A,B,C$ are distinct vertices of a cube?
2005 VTRMC, Problem 6
Compute $\int^1_0\left((e-1)\sqrt{\ln(1+ex-x)}+e^{x^2}\right)dx$.
2007 Germany Team Selection Test, 1
The sequence of real numbers $a_0,a_1,a_2,\ldots$ is defined recursively by \[a_0=-1,\qquad\sum_{k=0}^n\dfrac{a_{n-k}}{k+1}=0\quad\text{for}\quad n\geq 1.\]Show that $ a_{n} > 0$ for all $ n\geq 1$.
[i]Proposed by Mariusz Skalba, Poland[/i]
2015 BMT Spring, 10
Evaluate
$$\int^{\pi/2}_0\ln(4\sin x)dx.$$
1997 IMC, 3
Show that $\sum^{\infty}_{n=1}\frac{(-1)^{n-1}\sin(\log n)}{n^\alpha}$ converges iff $\alpha>0$.
2007 F = Ma, 19
A non-Hookian spring has force $F = -kx^2$ where $k$ is the spring constant and $x$ is the displacement from its unstretched position. For the system shown of a mass $m$ connected to an unstretched spring initially at rest, how far does the spring extend before the system momentarily comes to rest? Assume that all surfaces are frictionless and that the pulley is frictionless as well.
[asy]
size(250);
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps);
draw((0,0)--(0,-1)--(2,-1)--(2+sqrt(3),-2));
draw((2.5,-2)--(4.5,-2),dashed);
draw(circle((2.2,-0.8),0.2));
draw((2.2,-0.8)--(1.8,-1.2));
draw((0,-0.6)--(0.6,-0.6)--(0.75,-0.4)--(0.9,-0.8)--(1.05,-0.4)--(1.2,-0.8)--(1.35,-0.4)--(1.5,-0.8)--(1.65,-0.4)--(1.8,-0.8)--(1.95,-0.6)--(2.2,-0.6));
draw((2+0.3*sqrt(3),-1.3)--(2+0.3*sqrt(3)+0.6/2,-1.3+sqrt(3)*0.6/2)--(2+0.3*sqrt(3)+0.6/2+0.2*sqrt(3),-1.3+sqrt(3)*0.6/2-0.2)--(2+0.3*sqrt(3)+0.2*sqrt(3),-1.3-0.2)); //super complex Asymptote code gg
draw((2+0.3*sqrt(3)+0.3/2,-1.3+sqrt(3)*0.3/2)--(2.35,-0.6677));
draw(anglemark((2,-1),(2+sqrt(3),-2),(2.5,-2)));
label("$30^\circ$",(3.5,-2),NW);
[/asy]
$ \textbf{(A)}\ \left(\frac{3mg}{2k}\right)^{1/2} $
$ \textbf{(B)}\ \left(\frac{mg}{k}\right)^{1/2} $
$ \textbf{(C)}\ \left(\frac{2mg}{k}\right)^{1/2} $
$ \textbf{(D)}\ \left(\frac{\sqrt{3}mg}{k}\right)^{1/3} $
$ \textbf{(E)}\ \left(\frac{3\sqrt{3}mg}{2k}\right)^{1/3} $
Today's calculation of integrals, 849
Evaluate $\int_1^{e^2} \frac{(2x^2+2x+1)e^{x}}{\sqrt{x}}\ dx.$