This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1687

2012 Today's Calculation Of Integral, 858

On the plane $S$ in a space, given are unit circle $C$ with radius 1 and the line $L$. Find the volume of the solid bounded by the curved surface formed by the point $P$ satifying the following condition $(a),\ (b)$. $(a)$ The point of intersection $Q$ of the line passing through $P$ and perpendicular to $S$ are on the perimeter or the inside of $C$. $(b)$ If $A,\ B$ are the points of intersection of the line passing through $Q$ and pararell to $L$, then $\overline{PQ}=\overline{AQ}\cdot \overline{BQ}$.

Today's calculation of integrals, 764

Find $\lim_{n\to\infty} \int_0^{\pi} e^{x}|\sin nx|dx.$

2007 Today's Calculation Of Integral, 209

Let $m,\ n$ be the given distinct positive integers. Answer the following questions. (1) Find the real number $\alpha \ (|\alpha |<1)$ such that $\int_{-\pi}^{\pi}\sin (m+\alpha )x\ \sin (n+\alpha )x\ dx=0$. (2) Find the real number $\beta$ satifying the sytem of equation $\int_{-\pi}^{\pi}\sin^{2}(m+\beta )x\ dx=\pi+\frac{2}{4m-1}$, $\int_{-\pi}^{\pi}\sin^{2}(n+\beta )x\ dx=\pi+\frac{2}{4n-1}$.

2010 Contests, A2

Find all differentiable functions $f:\mathbb{R}\to\mathbb{R}$ such that \[f'(x)=\frac{f(x+n)-f(x)}n\] for all real numbers $x$ and all positive integers $n.$

2022 IMC, 1

Let $f: [0,1] \to (0, \infty)$ be an integrable function such that $f(x)f(1-x) = 1$ for all $x\in [0,1]$. Prove that $\int_0^1f(x)dx \geq 1$.

1999 Romania National Olympiad, 1

„œ‚Find all continuous functions $ f: \mathbb{R}\to [1,\infty)$ for wich there exists $ a\in\mathbb{R}$ and a positive integer $ k$ such that \[ f(x)f(2x)\cdot...\cdot f(nx)\leq an^k\] for all real $ x$ and all positive integers $ n$. [i]author :Radu Gologan[/i]

2020 Jozsef Wildt International Math Competition, W33

Let $p\in\mathbb N,f:[0,1]\to(0,\infty)$ be a continuous function and $$a_n=\int^1_0x^p\sqrt[n]{f(x)}dx,n\in\mathbb N,n\ge2.$$ Demonstrate that: a) $\lim_{n\to\infty}a_n=\frac1{p+1}$ b) $\lim_{n\to\infty}((p+1)a_n)^n=\exp\left((p+1)\int^1_0x^p\ln f(x)dx\right)$ [i]Proposed by Nicolae Papacu[/i]

2006 Romania National Olympiad, 2

Prove that \[ \lim_{n \to \infty} n \left( \frac{\pi}{4} - n \int_0^1 \frac{x^n}{1+x^{2n}} \, dx \right) = \int_0^1 f(x) \, dx , \] where $f(x) = \frac{\arctan x}{x}$ if $x \in \left( 0,1 \right]$ and $f(0)=1$. [i]Dorin Andrica, Mihai Piticari[/i]

2013 Today's Calculation Of Integral, 864

Let $m,\ n$ be positive integer such that $2\leq m<n$. (1) Prove the inequality as follows. \[\frac{n+1-m}{m(n+1)}<\frac{1}{m^2}+\frac{1}{(m+1)^2}+\cdots +\frac{1}{(n-1)^2}+\frac{1}{n^2}<\frac{n+1-m}{n(m-1)}\] (2) Prove the inequality as follows. \[\frac 32\leq \lim_{n\to\infty} \left(1+\frac{1}{2^2}+\cdots+\frac{1}{n^2}\right)\leq 2\] (3) Prove the inequality which is made precisely in comparison with the inequality in (2) as follows. \[\frac {29}{18}\leq \lim_{n\to\infty} \left(1+\frac{1}{2^2}+\cdots+\frac{1}{n^2}\right)\leq \frac{61}{36}\]

Today's calculation of integrals, 864

Let $m,\ n$ be positive integer such that $2\leq m<n$. (1) Prove the inequality as follows. \[\frac{n+1-m}{m(n+1)}<\frac{1}{m^2}+\frac{1}{(m+1)^2}+\cdots +\frac{1}{(n-1)^2}+\frac{1}{n^2}<\frac{n+1-m}{n(m-1)}\] (2) Prove the inequality as follows. \[\frac 32\leq \lim_{n\to\infty} \left(1+\frac{1}{2^2}+\cdots+\frac{1}{n^2}\right)\leq 2\] (3) Prove the inequality which is made precisely in comparison with the inequality in (2) as follows. \[\frac {29}{18}\leq \lim_{n\to\infty} \left(1+\frac{1}{2^2}+\cdots+\frac{1}{n^2}\right)\leq \frac{61}{36}\]

2010 Today's Calculation Of Integral, 563

Determine the pair of constant numbers $ a,\ b,\ c$ such that for a quadratic function $ f(x) \equal{} x^2 \plus{} ax \plus{} b$, the following equation is identity with respect to $ x$. \[ f(x \plus{} 1) \equal{} c\int_0^1 (3x^2 \plus{} 4xt)f'(t)dt\] .

2007 All-Russian Olympiad, 6

Do there exist non-zero reals $a$, $b$, $c$ such that, for any $n>3$, there exists a polynomial $P_{n}(x) = x^{n}+\dots+a x^{2}+bx+c$, which has exactly $n$ (not necessary distinct) integral roots? [i]N. Agakhanov, I. Bogdanov[/i]

2010 Today's Calculation Of Integral, 587

Evaluate $ \int_0^1 \frac{(x^2\plus{}3x)e^x\minus{}(x^2\minus{}3x)e^{\minus{}x}\plus{}2}{\sqrt{1\plus{}x(e^x\plus{}e^{\minus{}x})}}\ dx$.

2009 Today's Calculation Of Integral, 506

Let $ a,\ b$ be the real numbers such that $ 0\leq a\leq b\leq 1$. Find the minimum value of $ \int_0^1 |(x\minus{}a)(x\minus{}b)|\ dx$.

2007 F = Ma, 6

At time $t = 0$ a drag racer starts from rest at the origin and moves along a straight line with velocity given by $v = 5t^2$, where $v$ is in $\text{m/s}$ and $t$ in $\text{s}$. The expression for the displacement of the car from $t = 0$ to time $t$ is $ \textbf{(A)}\ 5t^3 \qquad\textbf{(B)}\ 5t^3/3\qquad\textbf{(C)}\ 10t \qquad\textbf{(D)}\ 15t^2 \qquad\textbf{(E)}\ 5t/2 $

2006 Bundeswettbewerb Mathematik, 2

Prove that there are no integers $x,y$ for that it is $x^3+y^3=4\cdot(x^2y+xy^2+1)$.

2010 Today's Calculation Of Integral, 523

Prove the following inequality. \[ \ln \frac {\sqrt {2009} \plus{} \sqrt {2010}}{\sqrt {2008} \plus{} \sqrt {2009}} < \int_{\sqrt {2008}}^{\sqrt {2009}} \frac {\sqrt {1 \minus{} e^{ \minus{} x^2}}}{x}\ dx < \sqrt {2009} \minus{} \sqrt {2008}\]

2010 Romania National Olympiad, 1

Let $f:\mathbb{R}\to\mathbb{R}$ be a monotonic function and $F:\mathbb{R}\to\mathbb{R}$ given by \[F(x)=\int_0^xf(t)\ \text{d}t.\] Prove that if $F$ has a finite derivative, then $f$ is continuous. [i]Dorin Andrica & Mihai Piticari[/i]

2012 Today's Calculation Of Integral, 811

Let $a$ be real number. Evaluate $\int_a^{a+\pi} |x|\cos x\ dx.$

2009 Today's Calculation Of Integral, 409

Evaluate $ \int_0^1 \sqrt{\frac{x\plus{}\sqrt{x^2\plus{}1}}{x^2\plus{}1}}\ dx$.

2012 Romania National Olympiad, 1

[color=darkred]Let $f\colon [0,\infty)\to\mathbb{R}$ be a continuous function such that $\int_0^nf(x)f(n-x)\ \text{d}x=\int_0^nf^2(x)\ \text{d}x$ , for any natural number $n\ge 1$ . Prove that $f$ is a periodic function.[/color]

1999 USAMTS Problems, 4

We say a triangle in the coordinate plane is [i]integral[/i] if its three vertices have integer coordinates and if its three sides have integer lengths. (a) Find an integral triangle with perimeter of $42$. (b) Is there an integral triangle with perimeter of $43$?

2020 Jozsef Wildt International Math Competition, W6

Determine the functions $f:(0,\pi)\to\mathbb R$ which satisfy $$f'(x)=\frac{\cos2020x}{\sin x}$$ for any real $x\in(0,\pi)$. [i]Proposed by D.M. Bătinețu-Giurgiu and Neculai Stanciu[/i]

1976 IMO Longlists, 14

A sequence $\{ u_n \}$ of integers is defined by \[u_1 = 2, u_2 = u_3 = 7,\] \[u_{n+1} = u_nu_{n-1} - u_{n-2}, \text{ for }n \geq 3\] Prove that for each $n \geq 1$, $u_n$ differs by $2$ from an integral square.