This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1687

2013 Today's Calculation Of Integral, 875

Evaluate $\int_0^1 \frac{x^2+x+1}{x^4+x^3+x^2+x+1}\ dx.$

2012 Turkey Team Selection Test, 1

Let $S_r(n)=1^r+2^r+\cdots+n^r$ where $n$ is a positive integer and $r$ is a rational number. If $S_a(n)=(S_b(n))^c$ for all positive integers $n$ where $a, b$ are positive rationals and $c$ is positive integer then we call $(a,b,c)$ as [i]nice triple.[/i] Find all nice triples.

2012 Today's Calculation Of Integral, 838

Prove that : $\frac{e-1}{e}<\int_0^1 e^{-x^2}dx<\frac{\pi}{4}.$

2012 Today's Calculation Of Integral, 781

Let $l,\ m$ be the tangent lines passing through the point $A(a,\ a-1)$ on the line $y=x-1$ and touch the parabola $y=x^2$. Note that the slope of $l$ is greater than that of $m$. (1) Exress the slope of $l$ in terms of $a$. (2) Denote $P,\ Q$ be the points of tangency of the lines $l,\ m$ and the parabola $y=x^2$. Find the minimum area of the part bounded by the line segment $PQ$ and the parabola $y=x^2$. (3) Find the minimum distance between the parabola $y=x^2$ and the line $y=x-1$.

1963 Miklós Schweitzer, 6

Show that if $ f(x)$ is a real-valued, continuous function on the half-line $ 0\leq x < \infty$, and \[ \int_0^{\infty} f^2(x)dx <\infty\] then the function \[ g(x)\equal{}f(x)\minus{}2e^{\minus{}x}\int_0^x e^tf(t)dt\] satisfies \[ \int _0^{\infty}g^2(x)dx\equal{}\int_0^{\infty}f^2(x)dx.\] [B. Szokefalvi-Nagy]

2009 Today's Calculation Of Integral, 436

Find the minimum area bounded by the graphs of $ y\equal{}x^2$ and $ y\equal{}kx(x^2\minus{}k)\ (k>0)$.

2007 Today's Calculation Of Integral, 197

Let $|a|<\frac{\pi}{2}.$ Evaluate the following definite integral. \[\int_{0}^{\frac{\pi}{2}}\frac{dx}{\{\sin (a+x)+\cos x\}^{2}}\]

2012 Today's Calculation Of Integral, 779

Consider parabolas $C_a: y=-2x^2+4ax-2a^2+a+1$ and $C: y=x^2-2x$ in the coordinate plane. When $C_a$ and $C$ have two intersection points, find the maximum area enclosed by these parabolas.

2013 Today's Calculation Of Integral, 867

Express $\int_0^2 f(x)dx$ for any quadratic functions $f(x)$ in terms of $f(0),\ f(1)$ and $f(2).$

2004 Romania National Olympiad, 1

Find all continuous functions $f : \mathbb R \to \mathbb R$ such that for all $x \in \mathbb R$ and for all $n \in \mathbb N^{\ast}$ we have \[ n^2 \int_{x}^{x + \frac{1}{n}} f(t) \, dt = n f(x) + \frac12 . \] [i]Mihai Piticari[/i]

1980 IMO, 8

Prove that if $(a,b,c,d)$ are positive integers such that $(a+2^{\frac13}b+2^{\frac23}c)^2=d$ then $d$ is a perfect square (i.e is the square of a positive integer).

2011 Graduate School Of Mathematical Sciences, The Master Cource, The University Of Tokyo, 3

Let $a$ be a positive real number. Evaluate $I=\int_0^{+\infty} \frac{\sin x\cos x}{x(x^2+a^2)}dx.$

1995 Flanders Math Olympiad, 2

How many values of $x\in\left[ 1,3 \right]$ are there, for which $x^2$ has the same decimal part as $x$?

2011 Today's Calculation Of Integral, 711

Evaluate $\int_e^{e^2} \frac{4(\ln x)^2+1}{(\ln x)^{\frac 32}}\ dx.$

2003 Baltic Way, 10

A [i]lattice point[/i] in the plane is a point with integral coordinates. The[i] centroid[/i] of four points $(x_i,y_i )$, $i = 1, 2, 3, 4$, is the point $\left(\frac{x_1 +x_2 +x_3 +x_4}{4},\frac{y_1 +y_2 +y_3 +y_4 }{4}\right)$. Let $n$ be the largest natural number for which there are $n$ distinct lattice points in the plane such that the centroid of any four of them is not a lattice point. Prove that $n = 12$.

2019 Jozsef Wildt International Math Competition, W. 6

Compute$$\int \limits_{\frac{\pi}{6}}^{\frac{\pi}{4}}\frac{(1+\ln x)\cos x+x\sin x\ln x}{\cos^2 x + x^2 \ln^2 x}dx$$

1986 Traian Lălescu, 1.4

Let be a parametric set: $$ \mathcal{F}_{\lambda } =\left\{ f:[1,\infty)\longrightarrow\mathbb{R}\bigg| x\in(1,\infty )\implies \int_{x}^{x^2+\lambda^2 x} f\left( \xi\right) d\xi =1\right\} . $$ [b]a)[/b] Show that $ \mathcal{F}_0 =\emptyset . $ [b]b)[/b] Prove that $ \lambda\neq 0 $ implies $ \mathcal{F}_{\lambda }\neq\emptyset . $

Today's calculation of integrals, 884

Prove that : \[\pi (e-1)<\int_0^{\pi} e^{|\cos 4x|}dx<2(e^{\frac{\pi}{2}}-1)\]

2011 Today's Calculation Of Integral, 720

Evaluate $\int_0^{2\pi} |x^2-\pi ^ 2 -\sin ^ 2 x|\ dx$.

2004 Romania National Olympiad, 2

Let $P(n)$ be the number of functions $f: \mathbb{R} \to \mathbb{R}$, $f(x)=a x^2 + b x + c$, with $a,b,c \in \{1,2,\ldots,n\}$ and that have the property that $f(x)=0$ has only integer solutions. Prove that $n<P(n)<n^2$, for all $n \geq 4$. [i]Laurentiu Panaitopol[/i]

PEN G Problems, 7

Show that $ \pi$ is irrational.

2005 Today's Calculation Of Integral, 63

For a positive number $x$, let $f(x)=\lim_{n\to\infty} \sum_{k=1}^n \left|\cos \left(\frac{2k+1}{2n}x\right)-\cos \left(\frac{2k-1}{2n}x\right)\right|$ Evaluate \[\lim_{x\rightarrow\infty}\frac{f(x)}{x}\]

2011 China National Olympiad, 3

Let $A$ be a set consist of finite real numbers,$A_1,A_2,\cdots,A_n$ be nonempty sets of $A$, such that [b](a)[/b] The sum of the elements of $A$ is $0,$ [b](b)[/b] For all $x_i \in A_i(i=1,2,\cdots,n)$,we have $x_1+x_2+\cdots+x_n>0$. Prove that there exist $1\le k\le n,$ and $1\le i_1<i_2<\cdots<i_k\le n$, such that \[|A_{i_1}\bigcup A_{i_2} \bigcup \cdots \bigcup A_{i_k}|<\frac{k}{n}|A|.\] Where $|X|$ denote the numbers of the elements in set $X$.

1972 Miklós Schweitzer, 3

Let $ \lambda_i \;(i=1,2,...)$ be a sequence of distinct positive numbers tending to infinity. Consider the set of all numbers representable in the form \[ \mu= \sum_{i=1}^{\infty}n_i\lambda_i ,\] where $ n_i \geq 0$ are integers and all but finitely many $ n_i$ are $ 0$. Let \[ L(x)= \sum _{\lambda_i \leq x} 1 \;\textrm{and}\ \;M(x)= \sum _{\mu \leq x} 1 \ .\] (In the latter sum, each $ \mu$ occurs as many times as its number of representations in the above form.) Prove that if \[ \lim_{x\rightarrow \infty} \frac{L(x+1)}{L(x)}=1,\] then \[ \lim_{x\rightarrow \infty} \frac{M(x+1)}{M(x)}=1.\] [i]G. Halasz[/i]

1995 Brazil National Olympiad, 5

Show that no one $n$-th root of a rational (for $n$ a positive integer) can be a root of the polynomial $x^5 - x^4 - 4x^3 + 4x^2 + 2$.