Found problems: 124
1998 Polish MO Finals, 2
The points $D, E$ on the side $AB$ of the triangle $ABC$ are such that $\frac{AD}{DB}\frac{AE}{EB} = \left(\frac{AC}{CB}\right)^2$. Show that $\angle ACD = \angle BCE$.
2011 AMC 10, 18
Rectangle $ABCD$ has $AB=6$ and $BC=3$. Point $M$ is chosen on side $AB$ so that $\angle AMD = \angle CMD$. What is the degree measure of $\angle AMD$?
$ \textbf{(A)}\ 15 \qquad
\textbf{(B)}\ 30 \qquad
\textbf{(C)}\ 45 \qquad
\textbf{(D)}\ 60 \qquad
\textbf{(E)}\ 75 $
1990 Kurschak Competition, 2
The incenter of $\triangle A_1A_2A_3$ is $I$, and the center of the $A_i$-excircle is $J_i$ ($i=1,2,3$). Let $B_i$ be the intersection point of side $A_{i+1}A_{i+2}$ and the bisector of $\angle A_{i+1}IA_{i+2}$ ($A_{i+3}:=A_i$ $\forall i$). Prove that the three lines $B_iJ_i$ are concurrent.
2007 Moldova Team Selection Test, 2
If $I$ is the incenter of a triangle $ABC$ and $R$ is the radius of its circumcircle then \[AI+BI+CI\leq 3R\]
2014 AMC 12/AHSME, 10
Three congruent isosceles triangles are constructed with their bases on the sides of an equilateral triangle of side length $1$. The sum of the areas of the three isosceles triangles is the same as the area of the equilateral triangle. What is the length of one of the two congruent sides of one of the isosceles triangles?
$\textbf{(A) }\dfrac{\sqrt3}4\qquad
\textbf{(B) }\dfrac{\sqrt3}3\qquad
\textbf{(C) }\dfrac23\qquad
\textbf{(D) }\dfrac{\sqrt2}2\qquad
\textbf{(E) }\dfrac{\sqrt3}2$
1991 IMO Shortlist, 5
In the triangle $ ABC,$ with $ \angle A \equal{} 60 ^{\circ},$ a parallel $ IF$ to $ AC$ is drawn through the incenter $ I$ of the triangle, where $ F$ lies on the side $ AB.$ The point $ P$ on the side $ BC$ is such that $ 3BP \equal{} BC.$ Show that $ \angle BFP \equal{} \frac{\angle B}{2}.$
2007 IberoAmerican, 2
Let $ ABC$ be a triangle with incenter $ I$ and let $ \Gamma$ be a circle centered at $ I$, whose radius is greater than the inradius and does not pass through any vertex. Let $ X_{1}$ be the intersection point of $ \Gamma$ and line $ AB$, closer to $ B$; $ X_{2}$, $ X_{3}$ the points of intersection of $ \Gamma$ and line $ BC$, with $ X_{2}$ closer to $ B$; and let $ X_{4}$ be the point of intersection of $ \Gamma$ with line $ CA$ closer to $ C$. Let $ K$ be the intersection point of lines $ X_{1}X_{2}$ and $ X_{3}X_{4}$. Prove that $ AK$ bisects segment $ X_{2}X_{3}$.
2000 Brazil Team Selection Test, Problem 1
Consider a triangle $ABC$ and $I$ its incenter. The line $(AI)$ meets the circumcircle of $ABC$ in $D$. Let $E$ and $F$ be the orthogonal projections of $I$ on $(BD)$ and $(CD)$ respectively. Assume that $IE+IF=\frac{1}{2}AD$. Calculate $\angle{BAC}$.
[color=red][Moderator edited: Also discussed at http://www.mathlinks.ro/Forum/viewtopic.php?t=5088 .][/color]
2014 Baltic Way, 13
Let $ABCD$ be a square inscribed in a circle $\omega$ and let $P$ be a point on the shorter arc $AB$ of $\omega$. Let $CP\cap BD = R$ and $DP \cap AC = S.$
Show that triangles $ARB$ and $DSR$ have equal areas.
2014 Contests, 4
In triangle $ABC$ let $A'$, $B'$, $C'$ respectively be the midpoints of the sides $BC$, $CA$, $AB$. Furthermore let $L$, $M$, $N$ be the projections of the orthocenter on the three sides $BC$, $CA$, $AB$, and let $k$ denote the nine-point circle. The lines $AA'$, $BB'$, $CC'$ intersect $k$ in the points $D$, $E$, $F$. The tangent lines on $k$ in $D$, $E$, $F$ intersect the lines $MN$, $LN$ and $LM$ in the points $P$, $Q$, $R$.
Prove that $P$, $Q$ and $R$ are collinear.
2018 CMIMC Geometry, 3
Let $ABC$ be a triangle with side lengths $5$, $4\sqrt 2$, and $7$. What is the area of the triangle with side lengths $\sin A$, $\sin B$, and $\sin C$?
2010 AMC 10, 14
Triangle $ ABC$ has $ AB \equal{} 2 \cdot AC$. Let $ D$ and $ E$ be on $ \overline{AB}$ and $ \overline{BC}$, respectively, such that $ \angle{BAE} \equal{} \angle{ACD}.$ Let $ F$ be the intersection of segments $ AE$ and $ CD$, and suppose that $ \triangle{CFE}$ is equilateral. What is $ \angle{ACB}$?
$ \textbf{(A)}\ 60^{\circ}\qquad \textbf{(B)}\ 75^{\circ}\qquad \textbf{(C)}\ 90^{\circ}\qquad \textbf{(D)}\ 105^{\circ}\qquad \textbf{(E)}\ 120^{\circ}$
1953 AMC 12/AHSME, 34
If one side of a triangle is $ 12$ inches and the opposite angle is $ 30$ degrees, then the diameter of the circumscribed circle is:
$ \textbf{(A)}\ 18\text{ inches} \qquad\textbf{(B)}\ 30\text{ inches} \qquad\textbf{(C)}\ 24\text{ inches} \qquad\textbf{(D)}\ 20\text{ inches}\\
\textbf{(E)}\ \text{none of these}$
1973 AMC 12/AHSME, 4
Two congruent $ 30^{\circ}$-$ 60^{\circ}$-$ 90^{\circ}$ are placed so that they overlap partly and their hypotenuses coincide. If the hypotenuse of each triangle is 12, the area common to both triangles is
$ \textbf{(A)}\ 6\sqrt3 \qquad
\textbf{(B)}\ 8\sqrt3 \qquad
\textbf{(C)}\ 9\sqrt3 \qquad
\textbf{(D)}\ 12\sqrt3 \qquad
\textbf{(E)}\ 24$
1981 IMO Shortlist, 11
On a semicircle with unit radius four consecutive chords $AB,BC, CD,DE$ with lengths $a, b, c, d$, respectively, are given. Prove that
\[a^2 + b^2 + c^2 + d^2 + abc + bcd < 4.\]
2010 Argentina Team Selection Test, 2
Let $ABC$ be a triangle with $AB = AC$. The incircle touches $BC$, $AC$ and $AB$ at $D$, $E$ and $F$ respectively. Let $P$ be a point on the arc $\overarc{EF}$ that does not contain $D$. Let $Q$ be the second point of intersection of $BP$ and the incircle of $ABC$. The lines $EP$ and $EQ$ meet the line $BC$ at $M$ and $N$, respectively.
Prove that the four points $P, F, B, M$ lie on a circle and $\frac{EM}{EN} = \frac{BF}{BP}$.
1966 AMC 12/AHSME, 6
$AB$ is the diameter of a circle centered at $O$. $C$ is a point on the circle such that angle $BOC$ is $60^\circ$. If the diameter of the circle is $5$ inches, the length of chord $AC$, expressed in inches, is:
$\text{(A)} \ 3 \qquad \text{(B)} \ \frac{5\sqrt{2}}{2} \qquad \text{(C)} \frac{5\sqrt3}{2} \ \qquad \text{(D)} \ 3\sqrt3 \qquad \text{(E)} \ \text{none of these}$
1997 Junior Balkan MO, 4
Determine the triangle with sides $a,b,c$ and circumradius $R$ for which $R(b+c) = a\sqrt{bc}$.
[i]Romania[/i]
2011 AIME Problems, 13
Point $P$ lies on the diagonal $AC$ of square $ABCD$ with $AP>CP$. Let $O_1$ and $O_2$ be the circumcenters of triangles $ABP$ and $CDP$ respectively. Given that $AB=12$ and $\angle O_1 P O_2 = 120^\circ$, then $AP=\sqrt{a}+\sqrt{b}$ where $a$ and $b$ are positive integers. Find $a+b$.
2020 Candian MO, 2#
Let $ABC$ be a triangle, and $M$ an interior point such that $\angle MAB=10^\circ$, $\angle MBA=20^\circ$, $\angle MAC=40^\circ$ and $\angle MCA=30^\circ$. Prove that the triangle is isosceles.
2004 China Team Selection Test, 2
Convex quadrilateral $ ABCD$ is inscribed in a circle, $ \angle{A}\equal{}60^o$, $ BC\equal{}CD\equal{}1$, rays $ AB$ and $ DC$ intersect at point $ E$, rays $ BC$ and $ AD$ intersect each other at point $ F$. It is given that the perimeters of triangle $ BCE$ and triangle $ CDF$ are both integers. Find the perimeter of quadrilateral $ ABCD$.
2014 Mediterranean Mathematics Olympiad, 4
In triangle $ABC$ let $A'$, $B'$, $C'$ respectively be the midpoints of the sides $BC$, $CA$, $AB$. Furthermore let $L$, $M$, $N$ be the projections of the orthocenter on the three sides $BC$, $CA$, $AB$, and let $k$ denote the nine-point circle. The lines $AA'$, $BB'$, $CC'$ intersect $k$ in the points $D$, $E$, $F$. The tangent lines on $k$ in $D$, $E$, $F$ intersect the lines $MN$, $LN$ and $LM$ in the points $P$, $Q$, $R$.
Prove that $P$, $Q$ and $R$ are collinear.
2008 Harvard-MIT Mathematics Tournament, 6
Let $ ABC$ be a triangle with $ \angle A \equal{} 45^\circ$. Let $ P$ be a point on side $ BC$ with $ PB \equal{} 3$ and $ PC \equal{} 5$. Let $ O$ be the circumcenter of $ ABC$. Determine the length $ OP$.
2014 China Western Mathematical Olympiad, 2
Let $ AB$ be the diameter of semicircle $O$ ,
$C, D $ be points on the arc $AB$,
$P, Q$ be respectively the circumcenter of $\triangle OAC $ and $\triangle OBD $ .
Prove that:$CP\cdot CQ=DP \cdot DQ$.[asy]
import cse5; import olympiad; unitsize(3.5cm); dotfactor=4; pathpen=black;
real h=sqrt(55/64);
pair A=(-1,0), O=origin, B=(1,0),C=shift(-3/8,h)*O,D=shift(4/5,3/5)*O,P=circumcenter(O,A,C), Q=circumcenter(O,D,B);
D(arc(O,1,0,180),darkgreen);
D(MP("A",A,W)--MP("C",C,N)--MP("P",P,SE)--MP("D",D,E)--MP("Q",Q,E)--C--MP("O",O,S)--D--MP("B",B,E)--cycle,deepblue);
D(O);
[/asy]
2001 National Olympiad First Round, 33
Let $ABC$ be a triangle such that $|AC|=1$ and $|AB|=\sqrt 2$. Let $M$ be a point such that $|MA|=|AB|$, $m(\widehat{MAB}) = 90^\circ$, and $C$ and $M$ are on the opposite sides of $AB$. Let $N$ be a point such that $|NA|=|AX|$, $m(\widehat{NAC}) = 90^\circ$, and $B$ and $N$ are on the opposite sides of $AC$. If the line passing throung $A$ and the circumcenter of triangle $MAN$ meets $[BC]$ at $F$, what is $\dfrac {|BF|}{|FC|}$?
$
\textbf{(A)}\ 2\sqrt 2
\qquad\textbf{(B)}\ 2\sqrt 3
\qquad\textbf{(C)}\ 2
\qquad\textbf{(D)}\ 3
\qquad\textbf{(E)}\ 3\sqrt 2
$