This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 837

2014 SEEMOUS, Problem 4

a) Prove that $\lim_{n\to\infty}n\int^n_0\frac{\operatorname{arctan}\frac xn}{x(x^2+1)}dx=\frac\pi2$. b) Find the limit $\lim_{n\to\infty}n\left(m\int^n_0\frac{\operatorname{arctan}\frac xn}{x(x^2+1)}dx-\frac\pi2\right)$.

2001 District Olympiad, 4

Prove that: a) the sequence $a_n=\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{n+n},\ n\ge 1$ is monotonic. b) there is a sequence $(a_n)_{n\ge 1}\in \{0,1\}$ such that: \[\lim_{n\to \infty} \left(\frac{a_1}{n+1}+\frac{a_2}{n+2}+\ldots +\frac{a_n}{n+n}\right)=\frac{1}{2}\] [i]Radu Gologan[/i]

2008 Moldova MO 11-12, 4

Define the sequence $ (a_p)_{p\ge0}$ as follows: $ a_p\equal{}\displaystyle\frac{\binom p0}{2\cdot 4}\minus{}\frac{\binom p1}{3\cdot5}\plus{}\frac{\binom p2}{4\cdot6}\minus{}\ldots\plus{}(\minus{}1)^p\cdot\frac{\binom pp}{(p\plus{}2)(p\plus{}4)}$. Find $ \lim_{n\to\infty}(a_0\plus{}a_1\plus{}\ldots\plus{}a_n)$.

2006 Miklós Schweitzer, 6

Let G (n) = max | A(n) |, where A(n) ranges over all subsets of {1,2,...,n} and contains no three-member geometric series, ie, there is no $x, y, z \in A$ such that x < y < z and xz = y^2. Prove that $\lim_{n \to \infty} \frac{G (n)}{n}$ exists.

2010 Today's Calculation Of Integral, 636

Let $a>1$ be a constant. In the $xy$-plane, let $A(a,\ 0),\ B(a,\ \ln a)$ and $C$ be the intersection point of the curve $y=\ln x$ and the $x$-axis. Denote by $S_1$ the area of the part bounded by the $x$-axis, the segment $BA$ and the curve $y=\ln x$ (1) For $1\leq b\leq a$, let $D(b,\ \ln b)$. Find the value of $b$ such that the area of quadrilateral $ABDC$ is the closest to $S_1$ and find the area $S_2$. (2) Find $\lim_{a\rightarrow \infty} \frac{S_2}{S_1}$. [i]1992 Tokyo University entrance exam/Science[/i]

2024 CIIM, 5

A board of size $3 \times N$ initially has all of its cells painted white. Let $a(N)$ be the maximum number of cells that can be painted black in such a way that no three consecutive cells (either horizontally, vertically, or diagonally) are painted black. Prove that \[ \lim_{N \to \infty} \frac{a(N)}{N} \] exists and determine its value.

1984 IMO Longlists, 58

Let $(a_n)_1^{\infty}$ be a sequence such that $a_n \le a_{n+m} \le a_n + a_m$ for all positive integers $n$ and $m$. Prove that $\frac{a_n}{n}$ has a limit as $n$ approaches infinity.

2011 IMC, 3

Tags: limit , logarithm
Calculate $\displaystyle \sum_{n=1}^\infty \ln \left(1+\frac{1}{n}\right) \ln\left( 1+\frac{1}{2n}\right)\ln\left( 1+\frac{1}{2n+1}\right)$.

2012 IMC, 4

Let $f:\;\mathbb{R}\to\mathbb{R}$ be a continuously differentiable function that satisfies $f'(t)>f(f(t))$ for all $t\in\mathbb{R}$. Prove that $f(f(f(t)))\le0$ for all $t\ge0$. [i]Proposed by Tomáš Bárta, Charles University, Prague.[/i]

2004 IMC, 3

Let $A_n$ be the set of all the sums $\displaystyle \sum_{k=1}^n \arcsin x_k $, where $n\geq 2$, $x_k \in [0,1]$, and $\displaystyle \sum^n_{k=1} x_k = 1$. a) Prove that $A_n$ is an interval. b) Let $a_n$ be the length of the interval $A_n$. Compute $\displaystyle \lim_{n\to \infty} a_n$.

1960 Putnam, A6

Tags: probability , limit , game
A player repeatedly throwing a die is to play until their score reaches or passes a total $n$. Denote by $p(n)$ the probability of making exactly the total $n,$ and find the value of $\lim_{n \to \infty} p(n).$

2007 VJIMC, Problem 3

A function $f:[0,\infty)\to\mathbb R\setminus\{0\}$ is called [i]slowly changing[/i] if for any $t>1$ the limit $\lim_{x\to\infty}\frac{f(tx)}{f(x)}$ exists and is equal to $1$. Is it true that every slowly changing function has for sufficiently large $x$ a constant sign (i.e., is it true that for every slowly changing $f$ there exists an $N$ such that for every $x,y>N$ we have $f(x)f(y)>0$?)

1953 Miklós Schweitzer, 6

Tags: limit , sequence
[b]6.[/b] Let $H_{n}(x)$ be the [i]n[/i]th Hermite polynomial. Find $ \lim_{n \to \infty } (\frac{y}{2n})^{n} H_{n}(\frac{n}{y})$ For an arbitrary real y. [b](S.5)[/b] $H_n(x)=(-1)^n e^{x^2}\frac{d^n}{dx^n}\left(e^{{-x^2}}\right)$

2008 Moldova National Olympiad, 12.4

Define the sequence $ (a_p)_{p\ge0}$ as follows: $ a_p\equal{}\displaystyle\frac{\binom p0}{2\cdot 4}\minus{}\frac{\binom p1}{3\cdot5}\plus{}\frac{\binom p2}{4\cdot6}\minus{}\ldots\plus{}(\minus{}1)^p\cdot\frac{\binom pp}{(p\plus{}2)(p\plus{}4)}$. Find $ \lim_{n\to\infty}(a_0\plus{}a_1\plus{}\ldots\plus{}a_n)$.

2008 Harvard-MIT Mathematics Tournament, 7

([b]5[/b]) Find $ p$ so that $ \lim_{x\rightarrow\infty}x^p\left(\sqrt[3]{x\plus{}1}\plus{}\sqrt[3]{x\minus{}1}\minus{}2\sqrt[3]{x}\right)$ is some non-zero real number.

2011 Today's Calculation Of Integral, 765

Define two functions $g(x),\ f(x)\ (x\geq 0)$ by $g(x)=\int_0^x e^{-t^2}dt,\ f(x)=\int_0^1 \frac{e^{-(1+s^2)x}}{1+s^2}ds.$ Now we know that $f'(x)=-\int_0^1 e^{-(1+s^2)x}ds.$ (1) Find $f(0).$ (2) Show that $f(x)\leq \frac{\pi}{4}e^{-x}\ (x\geq 0).$ (3) Let $h(x)=\{g(\sqrt{x})\}^2$. Show that $f'(x)=-h'(x).$ (4) Find $\lim_{x\rightarrow +\infty} g(x)$ Please solve the problem without using Double Integral or Jacobian for those Japanese High School Students who don't study them.

2018 District Olympiad, 3

Let $(a_n)_{n\ge 1}$ be a sequence such that $a_n > 1$ and $a_{n+1}^2 \ge a_n a_{n + 2}$, for any $n\ge 1$. Show that the sequence $(x_n)_{n\ge 1}$ given by $x_n = \log_{a_n} a_{n + 1}$ for $n\ge 1$ is convergent and compute its limit.

2010 Today's Calculation Of Integral, 651

Find \[\lim_{n\to\infty}\int _0^{2n} e^{-2x}\left|x-2\lfloor\frac{x+1}{2}\rfloor\right|\ dx.\] [i]1985 Tohoku University entrance exam/Mathematics, Physics, Chemistry, Biology[/i]

2011 Today's Calculation Of Integral, 698

For a positive integer $n$, let denote $C_n$ the figure formed by the inside and perimeter of the circle with center the origin, radius $n$ on the $x$-$y$ plane. Denote by $N(n)$ the number of a unit square such that all of unit square, whose $x,\ y$ coordinates of 4 vertices are integers, and the vertices are included in $C_n$. Prove that $\lim_{n\to\infty} \frac{N(n)}{n^2}=\pi$.

1999 IMC, 4

Prove that there's no function $f: \mathbb{R}^+\rightarrow\mathbb{R}^+$ such that $f(x)^2\ge f(x+y)\left(f(x)+y\right)$ for all $x,y>0$.

2005 Gheorghe Vranceanu, 3

$ \lim_{n\to\infty }\left( \frac{1}{e}\sum_{i=0}^n \frac{1}{i!} \right)^{n!} $

2011 Putnam, B3

Tags: limit , function
Let $f$ and $g$ be (real-valued) functions defined on an open interval containing $0,$ with $g$ nonzero and continuous at $0.$ If $fg$ and $f/g$ are differentiable at $0,$ must $f$ be differentiable at $0?$

2010 District Olympiad, 4

Prove that exists sequences $ (a_n)_{n\ge 0}$ with $ a_n\in \{\minus{}1,\plus{}1\}$, for any $ n\in \mathbb{N}$, such that: \[ \lim_{n\rightarrow \infty}\left(\sqrt{n\plus{}a_1}\plus{}\sqrt{n\plus{}a_2}\plus{}...\plus{}\sqrt{n\plus{}a_n}\minus{}n\sqrt{n\plus{}a_0}\right)\equal{}\frac{1}{2}\]

2012 District Olympiad, 1

Let $a,b,c$ three positive distinct real numbers. Evaluate: \[\lim_{t\to \infty} \int_0^t \frac{1}{(x^2+a^2)(x^2+b^2)(x^2+c^2)}dx\]

PEN E Problems, 41

Show that $n$ is prime iff $\lim_{r \rightarrow\infty}\,\lim_{s \rightarrow\infty}\,\lim_{t \rightarrow \infty}\,\sum_{u=0}^{s}\left(1-\left(\cos\,\frac{(u!)^{r} \pi}{n} \right)^{2t} \right)=n$ PS : I posted it because it's in the PDF file but not here ...