This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 837

2010 Paenza, 4

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function with the following property: for all $\alpha \in \mathbb{R}_{>0}$, the sequence $(a_n)_{n \in \mathbb{N}}$ defined as $a_n = f(n\alpha)$ satisfies $\lim_{n \to \infty} a_n = 0$. Is it necessarily true that $\lim_{x \to +\infty} f(x) = 0$?

2006 Moldova MO 11-12, 6

Sequences $(x_n)_{n\ge1}$, $(y_n)_{n\ge1}$ satisfy the relations $x_n=4x_{n-1}+3y_{n-1}$ and $y_n=2x_{n-1}+3y_{n-1}$ for $n\ge1$. If $x_1=y_1=5$ find $x_n$ and $y_n$. Calculate $\lim_{n\rightarrow\infty}\frac{x_n}{y_n}$.

2005 Harvard-MIT Mathematics Tournament, 5

Calculate \[ \lim_{x \to 0^+} \left( x^{x^x} - x^x \right). \]

1987 Austrian-Polish Competition, 3

A function $f: R \to R$ satisfies $f (x + 1) = f (x) + 1$ for all $x$. Given $a \in R$, define the sequence $(x_n)$ recursively by $x_0 = a$ and $x_{n+1} = f (x_n)$ for $n \ge 0$. Suppose that, for some positive integer m, the difference $x_m - x_0 = k$ is an integer. Prove that the limit $\lim_{n\to \infty}\frac{x_n}{n}$ exists and determine its value.

2007 Romania Team Selection Test, 2

The world-renowned Marxist theorist [i]Joric[/i] is obsessed with both mathematics and social egalitarianism. Therefore, for any decimal representation of a positive integer $n$, he tries to partition its digits into two groups, such that the difference between the sums of the digits in each group be as small as possible. Joric calls this difference the [i]defect[/i] of the number $n$. Determine the average value of the defect (over all positive integers), that is, if we denote by $\delta(n)$ the defect of $n$, compute \[\lim_{n \rightarrow \infty}\frac{\sum_{k = 1}^{n}\delta(k)}{n}.\] [i]Iurie Boreico[/i]

2004 Vietnam National Olympiad, 1

The sequence $ (x_n)^{\infty}_{n\equal{}1}$ is defined by $ x_1 \equal{} 1$ and $ x_{n\plus{}1} \equal{}\frac{(2 \plus{} \cos 2\alpha)x_n \minus{} \cos^2\alpha}{(2 \minus{} 2 \cos 2\alpha)x_n \plus{} 2 \minus{} \cos 2\alpha}$, for all $ n \in\mathbb{N}$, where $ \alpha$ is a given real parameter. Find all values of $ \alpha$ for which the sequence $ (y_n)$ given by $ y_n \equal{} \sum_{k\equal{}1}^{n}\frac{1}{2x_k\plus{}1}$ has a finite limit when $ n \to \plus{}\infty$ and find that limit.

2019 Jozsef Wildt International Math Competition, W. 9

Tags: limit , sequence
Let $\alpha > 0$ be a real number. Compute the limit of the sequence $\{x_n\}_{n\geq 1}$ defined by $$x_n=\begin{cases} \sum \limits_{k=1}^n \sinh \left(\frac{k}{n^2}\right),& \text{when}\ n>\frac{1}{\alpha}\\ 0,& \text{when}\ n\leq \frac{1}{\alpha}\end{cases}$$

2005 IberoAmerican Olympiad For University Students, 3

Tags: limit , algebra
Consider the sequence defined recursively by $(x_1,y_1)=(0,0)$, $(x_{n+1},y_{n+1})=\left(\left(1-\frac{2}{n}\right)x_n-\frac{1}{n}y_n+\frac{4}{n},\left(1-\frac{1}{n}\right)y_n-\frac{1}{n}x_n+\frac{3}{n}\right)$. Find $\lim_{n\to \infty}(x_n,y_n)$.

1970 IMO Longlists, 52

The real numbers $a_0,a_1,a_2,\ldots$ satisfy $1=a_0\le a_1\le a_2\le\ldots. b_1,b_2,b_3,\ldots$ are defined by $b_n=\sum_{k=1}^n{1-{a_{k-1}\over a_k}\over\sqrt a_k}$. [b]a.)[/b] Prove that $0\le b_n<2$. [b]b.)[/b] Given $c$ satisfying $0\le c<2$, prove that we can find $a_n$ so that $b_n>c$ for all sufficiently large $n$.

2008 Teodor Topan, 4

Let $ (a_n)_{n \in \mathbb{N}^*}$ be a sequence of real positive numbers such that $ a_n>a_0,n\in \mathbb{N}$. Prove that $ \displaystyle\lim_{n\to\infty}\displaystyle\sum_{k\equal{}0}^{n}(\frac{a_k}{a_{n\minus{}k}})^k\equal{}\infty$.

1949 Miklós Schweitzer, 1

Let an infinite sequence of measurable sets be given on the interval $ (0,1)$ the measures of which are $ \geq \alpha>0$. Show that there exists a point of $ (0,1)$ which belongs to infinitely many terms of the sequence.

2019 District Olympiad, 1

Let $(a_n)_{n \ge 1}$ be a sequence of positive real numbers such that the sequence $(a_{n+1}-a_n)_{n \ge 1}$ is convergent to a non-zero real number. Evaluate the limit $$ \lim_{n \to \infty} \left( \frac{a_{n+1}}{a_n} \right)^n.$$

2007 Today's Calculation Of Integral, 176

Let $f_{n}(x)=\sum_{k=1}^{n}\frac{\sin kx}{\sqrt{k(k+1)}}.$ Find $\lim_{n\to\infty}\int_{0}^{2\pi}\{f_{n}(x)\}^{2}dx.$

2010 Argentina Team Selection Test, 3

Tags: limit , algebra , function
Find all functions $f: \mathbb R \rightarrow \mathbb R$ such that \[f(x+xy+f(y)) = \left(f(x)+\frac{1}{2}\right) \left(f(y)+\frac{1}{2}\right)\] holds for all real numbers $x,y$.

1990 Dutch Mathematical Olympiad, 2

Tags: limit , induction , algebra
Consider the sequence $ a_1\equal{}\frac{3}{2}, a_{n\plus{}1}\equal{}\frac{3a_n^2\plus{}4a_n\minus{}3}{4a_n^2}.$ $ (a)$ Prove that $ 1<a_n$ and $ a_{n\plus{}1}<a_n$ for all $ n$. $ (b)$ From $ (a)$ it follows that $ \displaystyle\lim_{n\to\infty}a_n$ exists. Find this limit. $ (c)$ Determine $ \displaystyle\lim_{n\to\infty}a_1a_2a_3...a_n$.

2008 Grigore Moisil Intercounty, 1

Let be a sequence of positive real numbers $ \left( a_n\right)_{n\ge 1} $ defined by the recurrence relation $ a_{n+1}=\ln \left(1+a_n\right) . $ Show that: [b]1)[/b] $ \lim_{n\to\infty } a_n=0 $ [b]2)[/b] $ \lim_{n\to\infty } na_n=2 $ [b]3[/b] $ \lim_{n\to\infty } \frac{n(na_n-2)}{\ln n}=2/3 $ [i]Dorel Duca[/i] and [i]Dorian Popa[/i]

1994 Turkey Team Selection Test, 2

Tags: algebra , limit , logarithm
Show that positive integers $n_i,m_i$ $(i=1,2,3, \cdots )$ can be found such that $ \mathop{\lim }\limits_{i \to \infty } \frac{2^{n_i}}{3^{m_i }} = 1$

2006 IMS, 4

Assume that $X$ is a seperable metric space. Prove that if $f: X\longrightarrow\mathbb R$ is a function that $\lim_{x\rightarrow a}f(x)$ exists for each $a\in\mathbb R$. Prove that set of points in which $f$ is not continuous is countable.

2007 Nicolae Coculescu, 2

Let $ F:\mathbb{R}\longrightarrow\mathbb{R} $ be a primitive with $ F(0)=0 $ of the function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ defined by $ f(x)=\frac{x}{1+e^x} , $ and let be a sequence $ \left( x_n \right)_{n\ge 0} $ such that $ x_0>0 $ and defined as $ x_n=F\left( x_{n-1} \right) . $ Calculate $ \lim_{n\to\infty } \frac{1}{n}\sum_{k=1}^n \frac{x_k}{\sqrt{x_{k+1}}} $ [i]Florian Dumitrel[/i]

2010 Today's Calculation Of Integral, 584

Find $ \lim_{x\rightarrow \infty} \left(\int_0^x \sqrt{1\plus{}e^{2t}}\ dt\minus{}e^x\right)$.

2024 ISI Entrance UGB, P5

Let $P(x)$ be a polynomial with real coefficients. Let $\alpha_1 , \dots , \alpha_k$ be the distinct real roots of $P(x)=0$. If $P'$ is the derivative of $P$, show that for each $i=1,\dots , k$ \[\lim_{x\to \alpha_i} \frac{(x-\alpha_i)P'(x)}{P(x)} = r_i, \] for some positive integer $r_i$.

1989 Greece National Olympiad, 3

Find the limit of the sequence $x_n$ defined by recurrence relation $$x_{n+2}=\frac{1}{12}x_{n+1}+\frac{1}{2}x_{n}+1$$ where $n=0,1,2,...$ for any initial values $x_2,x_1$.

2006 VTRMC, Problem 5

Let $\{a_n\}$ be a monotonically decreasing sequence of positive real numbers with limit $0$. Let $\{b_n\}$ be a rearrangement of the sequence such that for every non-negative integer $m$, the terms $b_{3m+1}$, $b_{3m+2}$, $b_{3m+3}$ are a rearrangement of the terms $a_{3m+1}$, $a_{3m+2}$, $a_{3m+3}$. Prove or give a counterexample to the following statement: the series $\sum_{n=1}^\infty(-1)^nb_n$ is convergent.

2011 N.N. Mihăileanu Individual, 4

[b]a)[/b] Prove that there exists an unique sequence of real numbers $ \left( x_n \right)_{n\ge 1} $ satisfying $$ -\text{ctg} x_n=x_n\in\left( (2n+1)\pi /2,(n+1)\pi \right) , $$ for any nonnegative integer $ n. $ [b]b)[/b] Show that $ \lim_{n\to\infty } \left( \frac{x_n}{(n+1)\pi } \right)^{n^2} =e^{-1/\pi^2} . $ [i]Cătălin Zârnă[/i]

2020 LIMIT Category 1, 5

Tags: counting , limit
Rohit is counting the minimum number of lines $m$, that can be drawn so that the number of distinct points of intersection exceeds $2020$. Find $m$. (A)$63$ (B)$64$ (C)$65$ (D)$66$