This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 837

2021 Belarusian National Olympiad, 10.1

Tags: algebra , limit , sequence
An arbitrary positive number $a$ is given. A sequence ${a_n}$ is defined by equalities $a_1=\frac{a}{a+1}$ and $a_{n+1}=\frac{aa_n}{a^2+a_n-aa_n}$ for all $n \geq 1$ Find the minimal constant $C$ such that inequality $$a_1+a_1a_2+\ldots+a_1\ldots a_m<C$$ holds for all positive integers $m$ regardless of $a$

2014 SEEMOUS, Problem 2

Tags: limit , sequence
Consider the sequence $(x_n)$ given by $$x_1=2,\enspace x_{n+1}=\frac{x_n+1+\sqrt{x_n^2+2x_n+5}}2,\enspace n\ge2.$$Prove that the sequence $y_n=\sum_{k=1}^n\frac1{x_k^2-1},\enspace n\ge1$ is convergent and find its limit.

Today's calculation of integrals, 855

Let $f(x)$ be a function which is differentiable twice and $f''(x)>0$ on $[0,\ 1]$. For a positive integer $n$, find $\lim_{n\to\infty} n\left\{\int_0^1 f(x)\ dx-\frac{1}{n}\sum_{k=0}^{n-1} f\left(\frac{k}{n}\right)\right\}.$

2004 Iran Team Selection Test, 6

$p$ is a polynomial with integer coefficients and for every natural $n$ we have $p(n)>n$. $x_k $ is a sequence that: $x_1=1, x_{i+1}=p(x_i)$ for every $N$ one of $x_i$ is divisible by $N.$ Prove that $p(x)=x+1$

2010 Today's Calculation Of Integral, 528

Consider a function $ f(x)\equal{}xe^{\minus{}x^3}$ defined on any real numbers. (1) Examine the variation and convexity of $ f(x)$ to draw the garph of $ f(x)$. (2) For a positive number $ C$, let $ D_1$ be the region bounded by $ y\equal{}f(x)$, the $ x$-axis and $ x\equal{}C$. Denote $ V_1(C)$ the volume obtained by rotation of $ D_1$ about the $ x$-axis. Find $ \lim_{C\rightarrow \infty} V_1(C)$. (3) Let $ M$ be the maximum value of $ y\equal{}f(x)$ for $ x\geq 0$. Denote $ D_2$ the region bounded by $ y\equal{}f(x)$, the $ y$-axis and $ y\equal{}M$. Find the volume $ V_2$ obtained by rotation of $ D_2$ about the $ y$-axis.

2012 Today's Calculation Of Integral, 825

Answer the following questions. (1) For $x\geq 0$, show that $x-\frac{x^3}{6}\leq \sin x\leq x.$ (2) For $x\geq 0$, show that $\frac{x^3}{3}-\frac{x^5}{30}\leq \int_0^x t\sin t\ dt\leq \frac{x^3}{3}.$ (3) Find the limit \[\lim_{x\rightarrow 0} \frac{\sin x-x\cos x}{x^3}.\]

2010 Contests, 522

Find $ \lim_{a\rightarrow{\infty}} \frac{1}{a^2}\int_0^a \ln (1\plus{}e^x)dx$.

1977 Miklós Schweitzer, 10

Let the sequence of random variables $ \{ X_m, \; m \geq 0\ \}, \; X_0=0$, be an infinite random walk on the set of nonnegative integers with transition probabilities \[ p_i=P(X_{m+1}=i+1 \mid X_m=i) >0, \; i \geq 0 \,\] \[ q_i=P(X_{m+1}=i-1 \mid X_m=i ) >0, \; i>0.\] Prove that for arbitrary $ k >0$ there is an $ \alpha_k > 1$ such that \[ P_n(k)=P \left ( \max_{0 \leq j \leq n} X_j =k \right)\] satisfies the limit relation \[ \lim_{L \rightarrow \infty} \frac 1L \sum_{n=1}^L P_n(k) \alpha_k ^n < \infty.\] [i]J. Tomko[/i]

2011 Today's Calculation Of Integral, 751

Find $\lim_{n\to\infty}\left(\frac{1}{n}\int_0^n (\sin ^ 2 \pi x)\ln (x+n)dx-\frac 12\ln n\right).$

2008 Teodor Topan, 2

Let $ \sigma \in S_n$ and $ \alpha <2$. Evaluate$ \displaystyle\lim_{n\to\infty} \displaystyle\sum_{k\equal{}1}^{n}\frac{\sigma (k)}{k^{\alpha}}$.

2003 India IMO Training Camp, 7

$p$ is a polynomial with integer coefficients and for every natural $n$ we have $p(n)>n$. $x_k $ is a sequence that: $x_1=1, x_{i+1}=p(x_i)$ for every $N$ one of $x_i$ is divisible by $N.$ Prove that $p(x)=x+1$

PEN S Problems, 15

Let $\alpha(n)$ be the number of digits equal to one in the dyadic representation of a positive integer $n$. Prove that [list=a] [*] the inequality $\alpha(n^2 ) \le \frac{1}{2} \alpha(n) (1+\alpha(n))$ holds, [*] equality is attained for infinitely $n\in\mathbb{N}$, [*] there exists a sequence $\{n_i\}$ such that $\lim_{i \to \infty} \frac{ \alpha({n_{i}}^2 )}{ \alpha(n_{i}) } = 0$.[/list]

2018 Brazil Undergrad MO, 10

How many ordered pairs of real numbers $ (a, b) $ satisfy equality $\lim_{x \to 0} \frac{\sin^2x}{e^{ax}-2bx-1}= \frac{1}{2}$?

PEN O Problems, 25

Tags: limit
Let $A$ be a non-empty set of positive integers. Suppose that there are positive integers $b_{1}$, $\cdots$, $b_{n}$ and $c_{1}$, $\cdots$, $c_{n}$ such that [list] [*] for each $i$ the set $b_{i}A+c_{i}=\{b_{i}a+c_{i}\vert a \in A \}$ is a subset of $A$, [*] the sets $b_{i}A+c_{i}$ and $b_{j}A+c_{j}$ are disjoint whenever $i \neq j$.[/list] Prove that \[\frac{1}{b_{1}}+\cdots+\frac{1}{b_{n}}\le 1.\]

2006 Putnam, B6

Let $k$ be an integer greater than $1.$ Suppose $a_{0}>0$ and define \[a_{n+1}=a_{n}+\frac1{\sqrt[k]{a_{n}}}\] for $n\ge 0.$ Evaluate \[\lim_{n\to\infty}\frac{a_{n}^{k+1}}{n^{k}}.\]

1967 Swedish Mathematical Competition, 4

Tags: algebra , sum , limit
The sequence $a_1, a_2, a_3, ...$ of positive reals is such that $\sum a_i$ diverges. Show that there is a sequence $b_1, b_2, b_3, ...$ of positive reals such that $\lim b_n = 0$ and $\sum a_ib_i$ diverges.

2003 Moldova National Olympiad, 12.1

For every natural number $n$ let: $a_n=ln(1+2e+4e^4+\dots+2ne^{n^2})$. Find: \[ \displaystyle{\lim_{n \to \infty}\frac{a_n}{n^2}} \].

2006 ISI B.Stat Entrance Exam, 6

(a) Let $f(x)=x-xe^{-\frac1x}, \ \ x>0$. Show that $f(x)$ is an increasing function on $(0,\infty)$, and $\lim_{x\to\infty} f(x)=1$. (b) Using part (a) or otherwise, draw graphs of $y=x-1, y=x, y=x+1$, and $y=xe^{-\frac{1}{|x|}}$ for $-\infty<x<\infty$ using the same $X$ and $Y$ axes.

2011 Gheorghe Vranceanu, 2

$ a>0,\quad\lim_{n\to\infty }\sum_{i=1}^n \frac{1}{n+a^i} $

2010 Today's Calculation Of Integral, 562

(1) Show the following inequality for every natural number $ k$. \[ \frac {1}{2(k \plus{} 1)} < \int_0^1 \frac {1 \minus{} x}{k \plus{} x}dx < \frac {1}{2k}\] (2) Show the following inequality for every natural number $ m,\ n$ such that $ m > n$. \[ \frac {m \minus{} n}{2(m \plus{} 1)(n \plus{} 1)} < \log \frac {m}{n} \minus{} \sum_{k \equal{} n \plus{} 1}^{m} \frac {1}{k} < \frac {m \minus{} n}{2mn}\]

2022 ISI Entrance Examination, 6

Consider a sequence $P_{1}, P_{2}, \ldots$ of points in the plane such that $P_{1}, P_{2}, P_{3}$ are non-collinear and for every $n \geq 4, P_{n}$ is the midpoint of the line segment joining $P_{n-2}$ and $P_{n-3}$. Let $L$ denote the line segment joining $P_{1}$ and $P_{5}$. Prove the following: [list=a] [*] The area of the triangle formed by the points $P_{n}, P_{n-1}, P_{n-2}$ converges to zero as $n$ goes to infinity. [*] The point $P_{9}$ lies on $L$. [/list]

2010 Today's Calculation Of Integral, 626

Find $\lim_{a\rightarrow +0} \int_a^1 \frac{x\ln x}{(1+x)^3}dx.$ [i]2010 Nara Medical University entrance exam[/i]

2008 ISI B.Stat Entrance Exam, 6

Evaluate: $\lim_{n\to\infty} \frac{1}{2n} \ln\binom{2n}{n}$

2007 Today's Calculation Of Integral, 183

Let $n\geq 2$ be integer. On a plane there are $n+2$ points $O,\ P_{0},\ P_{1},\ \cdots P_{n}$ which satisfy the following conditions as follows. [1] $\angle{P_{k-1}OP_{k}}=\frac{\pi}{n}\ (1\leq k\leq n),\ \angle{OP_{k-1}P_{k}}=\angle{OP_{0}P_{1}}\ (2\leq k\leq n).$ [2] $\overline{OP_{0}}=1,\ \overline{OP_{1}}=1+\frac{1}{n}.$ Find $\lim_{n\to\infty}\sum_{k=1}^{n}\overline{P_{k-1}P_{k}}.$

2005 Today's Calculation Of Integral, 23

Evaluate \[\lim_{a\rightarrow \frac{\pi}{2}-0}\ \int_0^a\ (\cos x)\ln (\cos x)\ dx\ \left(0\leqq a <\frac{\pi}{2}\right)\]