Found problems: 837
1991 French Mathematical Olympiad, Problem 2
For each $n\in\mathbb N$, the function $f_n$ is defined on real numbers $x\ge n$ by
$$f_n(x)=\sqrt{x-n}+\sqrt{x-n+1}+\ldots+\sqrt{x+n}-(2n+1)\sqrt x.$$(a) If $n$ is fixed, prove that $\lim_{x\to+\infty}f_n(x)=0$.
(b) Find the limit of $f_n(n)$ as $n\to+\infty$.
2010 Today's Calculation Of Integral, 549
Let $ f(x)$ be a function defined on $ [0,\ 1]$. For $ n=1,\ 2,\ 3,\ \cdots$, a polynomial $ P_n(x)$ is defined by $ P_n(x)=\sum_{k=0}^n {}_nC{}_k f\left(\frac{k}{n}\right)x^k(1-x)^{n-k}$. Prove that $ \lim_{n\to\infty} \int_0^1 P_n(x)dx=\int_0^1 f(x)dx$.
2020 LIMIT Category 2, 5
Regular hexagon $ABCDEF$ has vertices $A$ and $C$ at $(0,0)$ and $(7,1)$ respectively. What is its area?
(A)$20\sqrt{3}$
(B)$20\sqrt{2}$
(C)$25\sqrt{3}$
(D)None of these
2024 ISI Entrance UGB, P4
Let $f: \mathbb R \to \mathbb R$ be a function which is differentiable at $0$. Define another function $g: \mathbb R \to \mathbb R$ as follows:
$$g(x) = \begin{cases}
f(x)\sin\left(\frac 1x\right) ~ &\text{if} ~ x \neq 0 \\
0 &\text{if} ~ x = 0.
\end{cases}$$
Suppose that $g$ is also differentiable at $0$. Prove that \[g'(0) = f'(0) = f(0) = g(0) = 0.\]
2019 Jozsef Wildt International Math Competition, W. 11
Let $(s_n)_{n\geq 1}$ be a sequence given by $s_n=-2\sqrt{n}+\sum \limits_{k=1}^n\frac{1}{\sqrt{k}}$ with $\lim \limits_{n \to \infty}s_n=s=$Ioachimescu constant and $(a_n)_{n\geq 1}$ , $(b_n)_{n\geq 1}$ be a positive real sequences such that $$\lim \limits_{n\to \infty}\frac{a_{n+1}}{na_n}=a\in \mathbb{R}^*_+, \lim \limits_{n\to \infty}\frac{b_{n+1}}{b_n\sqrt{n}}=b\in \mathbb{R}^*_+$$Compute$$\lim \limits_{n\to \infty}\left(1+e^{s_n}-e^{s_{n+1}}\right)^{\sqrt[n]{a_nb_n}}$$
1993 IMO Shortlist, 1
Define a sequence $\langle f(n)\rangle^{\infty}_{n=1}$ of positive integers by $f(1) = 1$ and \[f(n) = \begin{cases} f(n-1) - n & \text{ if } f(n-1) > n;\\ f(n-1) + n & \text{ if } f(n-1) \leq n, \end{cases}\]
for $n \geq 2.$ Let $S = \{n \in \mathbb{N} \;\mid\; f(n) = 1993\}.$
[b](i)[/b] Prove that $S$ is an infinite set.
[b](ii)[/b] Find the least positive integer in $S.$
[b](iii)[/b] If all the elements of $S$ are written in ascending order as \[ n_1 < n_2 < n_3 < \ldots , \] show that \[ \lim_{i\rightarrow\infty} \frac{n_{i+1}}{n_i} = 3. \]
1997 Canada National Olympiad, 3
Prove that $\frac{1}{1999}< \prod_{i=1}^{999}{\frac{2i-1}{2i}}<\frac{1}{44}$.
1982 IMO Shortlist, 3
Consider infinite sequences $\{x_n\}$ of positive reals such that $x_0=1$ and $x_0\ge x_1\ge x_2\ge\ldots$.
[b]a)[/b] Prove that for every such sequence there is an $n\ge1$ such that: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}\ge3.999. \]
[b]b)[/b] Find such a sequence such that for all $n$: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}<4. \]
1974 Miklós Schweitzer, 6
Let $ f(x)\equal{}\sum_{n\equal{}1}^{\infty} a_n/(x\plus{}n^2), \;(x \geq 0)\ ,$ where $ \sum_{n\equal{}1}^{\infty} |a_n|n^{\minus{} \alpha} < \infty$ for some $ \alpha > 2$. Let us assume that for some $ \beta > 1/{\alpha}$, we have $ f(x)\equal{}O(e^{\minus{}x^{\beta}})$ as $ x \rightarrow \infty$. Prove that $ a_n$ is identically $ 0$.
[i]G. Halasz[/i]
2011 Today's Calculation Of Integral, 724
Find $\lim_{n\to\infty}\left\{\left(1+n\right)^{\frac{1}{n}}\left(1+\frac{n}{2}\right)^{\frac{2}{n}}\left(1+\frac{n}{3}\right)^{\frac{3}{n}}\cdots\cdots 2\right\}^{\frac{1}{n}}$.
2014 Junior Balkan MO, 4
For a positive integer $n$, two payers $A$ and $B$ play the following game: Given a pile of $s$ stones, the players take turn alternatively with $A$ going first. On each turn the player is allowed to take either one stone, or a prime number of stones, or a positive multiple of $n$ stones. The winner is the one who takes the last stone. Assuming both $A$ and $B$ play perfectly, for how many values of $s$ the player $A$ cannot win?
2010 VTRMC, Problem 6
Define a sequence by $a_1=1,a_2=\frac12$, and $a_{n+2}=a_{n+1}-\frac{a_na_{n+1}}2$ for $n$ a positive integer. Find $\lim_{n\to\infty}na_n$.
2011 Tokyo Instutute Of Technology Entrance Examination, 1
Consider a curve $C$ on the $x$-$y$ plane expressed by $x=\tan \theta ,\ y=\frac{1}{\cos \theta}\left (0\leq \theta <\frac{\pi}{2}\right)$.
For a constant $t>0$, let the line $l$ pass through the point $P(t,\ 0)$ and is perpendicular to the $x$-axis,intersects with the curve $C$ at $Q$. Denote by $S_1$ the area of the figure bounded by the curve $C$, the $x$-axis, the $y$-axis and the line $l$, and denote by $S_2$ the area of $\triangle{OPQ}$. Find $\lim_{t\to\infty} \frac{S_1-S_2}{\ln t}.$
1971 Spain Mathematical Olympiad, 5
Prove that whatever the complex number $z$ is, it is true that
$$(1 + z^{2^n})(1-z^{2^n})= 1- z^{2^{n+1}}.$$
Writing the equalities that result from giving $n$ the values $0, 1, 2, . . .$ and multiplying them, show that for $|z| < 1$ holds
$$\frac{1}{1-z}= \lim_{k\to \infty}(1 + z)(1 + z^2)(1 + z^{2^2})...(1 + z^{2^k}).$$
2006 Switzerland Team Selection Test, 3
Find all the functions $f : \mathbb{R} \to \mathbb{R}$ satisfying for all $x,y \in \mathbb{R}$ $f(f(x)-y^2) = f(x)^2 - 2f(x)y^2 + f(f(y))$.
1984 Vietnam National Olympiad, 2
The sequence $(u_n)$ is defined by $u_1 = 1, u_2 = 2$ and $u_{n+1} = 3u_n - u_{n-1}$ for $n \ge 2$. Set $v_n =\sum_{k=1}^n \text{arccot }u_k$. Compute $\lim_{n\to\infty} v_n$.
2006 Moldova National Olympiad, 12.2
Let $a, b, n \in \mathbb{N}$, with $a, b \geq 2.$ Also, let $I_{1}(n)=\int_{0}^{1} \left \lfloor{a^n x} \right \rfloor dx $ and $I_{2} (n) = \int_{0}^{1} \left \lfloor{b^n x} \right \rfloor dx.$ Find $\lim_{n \to \infty} \dfrac{I_1(n)}{I_{2}(n)}.$
1984 AIME Problems, 15
Determine $w^2+x^2+y^2+z^2$ if
\[ \begin{array}{l} \displaystyle \frac{x^2}{2^2-1}+\frac{y^2}{2^2-3^2}+\frac{z^2}{2^2-5^2}+\frac{w^2}{2^2-7^2}=1 \\ \displaystyle \frac{x^2}{4^2-1}+\frac{y^2}{4^2-3^2}+\frac{z^2}{4^2-5^2}+\frac{w^2}{4^2-7^2}=1 \\ \displaystyle \frac{x^2}{6^2-1}+\frac{y^2}{6^2-3^2}+\frac{z^2}{6^2-5^2}+\frac{w^2}{6^2-7^2}=1 \\ \displaystyle \frac{x^2}{8^2-1}+\frac{y^2}{8^2-3^2}+\frac{z^2}{8^2-5^2}+\frac{w^2}{8^2-7^2}=1 \\ \end{array} \]
2005 Grigore Moisil Urziceni, 2
[b]a)[/b] Prove that $ \lim_{x\to\infty } \sqrt{x}\cdot\sum_{k=1}^{\lfloor \sqrt{x} \rfloor} \frac{1}{k+x}=1. $
[b]b)[/b] Show that $ \lim_{x\to\infty } \left( -\left\lfloor\sqrt{x}\right\rfloor +x\cdot\sum_{k=1}^{\lfloor \sqrt{x} \rfloor} \frac{1}{k+x} \right) =\frac{-1}{2} $
[b]c)[/b] What about $ \lim_{x\to\infty } \left( -\sqrt{x} +x\cdot\sum_{k=1}^{\lfloor \sqrt{x} \rfloor} \frac{1}{k+x} \right) ? $
2004 Unirea, 3
[b]a)[/b] Prove that for any natural numbers $ n, $ the inequality
$$ e^{2-1/n} >\prod_{k=1}^n (1+1/k^2) $$
holds.
[b]b)[/b] Prove that the sequence $ \left( a_n \right)_{n\ge 1} $ with $ a_1=1 $ and defined by the recursive relation $ a_{n+1}=\frac{2}{n^2}\sum_{k=1}^n ka_k $ is nondecreasing. Is it convergent?
Today's calculation of integrals, 768
Let $r$ be a real such that $0<r\leq 1$. Denote by $V(r)$ the volume of the solid formed by all points of $(x,\ y,\ z)$ satisfying
\[x^2+y^2+z^2\leq 1,\ x^2+y^2\leq r^2\]
in $xyz$-space.
(1) Find $V(r)$.
(2) Find $\lim_{r\rightarrow 1-0} \frac{V(1)-V(r)}{(1-r)^{\frac 32}}.$
(3) Find $\lim_{r\rightarrow +0} \frac{V(r)}{r^2}.$
2016 Mathematical Talent Reward Programme, MCQ: P 2
Let $f$ be a function satisfying $f(x+y+z)=f(x)+f(y)+f(z)$ for all integers $x$, $y$, $z$. Suppose $f(1)=1$, $f(2)=2$. Then $\lim \limits_{n\to \infty} \frac{1}{n^3} \sum \limits_{r=1}^n 4rf(3r)$ equals
[list=1]
[*] 4
[*] 6
[*] 12
[*] 24
[/list]
2020 LIMIT Category 1, 8
Find the greatest integer which doesn't exceed $\frac{3^{100}+2^{100}}{3^{96}+2^{96}}$
(A)$81$
(B)$80$
(C)$79$
(D)$82$
2013 Romania National Olympiad, 3
A function \[\text{f:(0,}\infty \text{) }\to \text{(0,}\infty \text{)}\] is called contract if, for every numbers $x,y\in \text{(0,}\infty \text{)}$ we have, $\underset{n\to \infty }{\mathop{\lim }}\,\left( {{f}^{n}}\left( x \right)-{{f}^{n}}\left( y \right) \right)=0$ where ${{f}^{n}}=\underbrace{f\circ f\circ ...\circ f}_{n\ f\text{'s}}$
a) Consider \[f:\text{(0,}\infty \text{) }\to \text{(0,}\infty \text{)}\] a function contract, continue with the property that has a fixed point, that existing ${{x}_{0}}\in \text{(0,}\infty \text{) }$ there so that $f\left( {{x}_{0}} \right)={{x}_{0}}.$ Show that $f\left( x \right)>x,$ for every $x\in \text{(0,}{{x}_{0}}\text{)}\,$ and $f\left( x \right)<x$, for every $x\in \text{(}{{x}_{0}}\text{,}\infty \text{)}\,$.
b) Show that the given function \[f\text{:(0,}\infty \text{) }\to \text{(0,}\infty \text{)}\] given by $f\left( x \right)=x+\frac{1}{x}$ is contracted but has no fix number.
1989 Spain Mathematical Olympiad, 3
Prove $ \frac{1}{10\sqrt2}<\frac{1}{2}\frac{3}{4}\frac{5}{6}...\frac{99}{100}<\frac{1}{10} $