Found problems: 837
2012 Graduate School Of Mathematical Sciences, The Master Course, Kyoto University, 5
Let $a,\ b>0$ be real numbers, $n\geq 2$ be integers.
Evaluate $I_n=\int_{-\infty}^{\infty} \frac{exp(ia(x-ib))}{(x-ib)^n}dx.$
2023 District Olympiad, P3
Let $f:[0,1]\to\mathbb{R}$ be a continuous function. Prove that \[\lim_{n\to\infty}\int_0^1 f(x^n) \ dx=f(0).\]Furthermore, if $f(0)=0$ and $f$ is right-differentiable in $0{}$, prove that the limits \[\lim_{\varepsilon\to0}\int_\varepsilon^1\frac{f(x)}{x} \ dx\quad\text{and}\quad\lim_{n\to\infty}\left(n\int_0^1f(x^n) \ dx\right)\]exist, are finite and are equal.
2013 Romania National Olympiad, 3
A function \[\text{f:(0,}\infty \text{) }\to \text{(0,}\infty \text{)}\] is called contract if, for every numbers $x,y\in \text{(0,}\infty \text{)}$ we have, $\underset{n\to \infty }{\mathop{\lim }}\,\left( {{f}^{n}}\left( x \right)-{{f}^{n}}\left( y \right) \right)=0$ where ${{f}^{n}}=\underbrace{f\circ f\circ ...\circ f}_{n\ f\text{'s}}$
a) Consider \[f:\text{(0,}\infty \text{) }\to \text{(0,}\infty \text{)}\] a function contract, continue with the property that has a fixed point, that existing ${{x}_{0}}\in \text{(0,}\infty \text{) }$ there so that $f\left( {{x}_{0}} \right)={{x}_{0}}.$ Show that $f\left( x \right)>x,$ for every $x\in \text{(0,}{{x}_{0}}\text{)}\,$ and $f\left( x \right)<x$, for every $x\in \text{(}{{x}_{0}}\text{,}\infty \text{)}\,$.
b) Show that the given function \[f\text{:(0,}\infty \text{) }\to \text{(0,}\infty \text{)}\] given by $f\left( x \right)=x+\frac{1}{x}$ is contracted but has no fix number.
2006 VJIMC, Problem 2
Suppose that $(a_n)$ is a sequence of real numbers such that the series
$$\sum_{n=1}^\infty\frac{a_n}n$$is convergent. Show that the sequence
$$b_n=\frac1n\sum^n_{j=1}a_j$$is convergent and find its limit.
1996 China Team Selection Test, 2
$S$ is the set of functions $f:\mathbb{N} \to \mathbb{R}$ that satisfy the following conditions:
[b]I.[/b] $f(1) = 2$
[b]II.[/b] $f(n+1) \geq f(n) \geq \frac{n}{n + 1} f(2n)$ for $n = 1, 2, \ldots$
Find the smallest $M \in \mathbb{N}$ such that for any $f \in S$ and any $n \in \mathbb{N}, f(n) < M$.
2004 Nicolae Coculescu, 2
Let bet a sequence $\left( a_n \right)_{n\ge 1} $ with $ a_1=1 $ and defined as $ a_n=\sqrt[n]{1+na_{n-1}} . $
Show that $ \left( a_n \right)_{n\ge 1} $ is convergent and determine its limit.
[i]Florian Dumitrel[/i]
1973 Dutch Mathematical Olympiad, 4
We have an infinite sequence of real numbers $x_0,x_1, x_2, ... $ such that $x_{n+1} = \sqrt{x_n -\frac14}$ holds for all natural $n$ and moreover $x_0 \in \frac12$.
(a) Prove that for every natural $n$ holds: $x_n > \frac12$
(b) Prove that $\lim_{n \to \infty} x_n$ exists. Calculate this limit.
2019 Jozsef Wildt International Math Competition, W. 30
[list=1]
[*] Prove that $$\lim \limits_{n \to \infty} \left(n+\frac{1}{4}-\zeta(3)-\zeta(5)-\cdots -\zeta(2n+1)\right)=0$$
[*] Calculate $$\sum \limits_{n=1}^{\infty} \left(n+\frac{1}{4}-\zeta(3)-\zeta(5)-\cdots -\zeta(2n+1)\right)$$
[/list]
1967 Miklós Schweitzer, 5
Let $ f$ be a continuous function on the unit interval $ [0,1]$. Show that \[ \lim_{n \rightarrow \infty} \int_0^1... \int_0^1f(\frac{x_1+...+x_n}{n})dx_1...dx_n=f(\frac12)\] and \[ \lim_{n \rightarrow \infty} \int_0^1... \int_0^1f (\sqrt[n]{x_1...x_n})dx_1...dx_n=f(\frac1e).\]
2020 LIMIT Category 2, 6
Let $f(x)$ be a real-valued function satisfying $af(x)+bf(-x)=px^2+qx+r$. $a$ and $b$ are distinct real numbers and $p,q,r$ are non-zero real numbers. Then $f(x)=0$ will have real solutions when
(A)$\left(\frac{a+b}{a-b}\right)\leq\frac{q^2}{4pr}$
(B)$\left(\frac{a+b}{a-b}\right)\leq\frac{4pr}{q^2}$
(C)$\left(\frac{a+b}{a-b}\right)\geq\frac{q^2}{4pr}$
(D)$\left(\frac{a+b}{a-b}\right)\geq\frac{4pr}{q^2}$
1966 Swedish Mathematical Competition, 1
Let $\{x\}$ denote the fractional part of $x$, $x - [x]$. The sequences $x_1, x_2, x_3, ...$ and $y_1, y_2, y_3, ...$ are such that $\lim \{x_n\} = \lim \{y_n\} = 0$. Is it true that $\lim \{x_n + y_n\} = 0$? $\lim \{x_n - y_n\} = 0$?
2009 Today's Calculation Of Integral, 456
Find $ \lim_{n\to\infty} \frac{\pi}{n}\left\{\frac{1}{\sin \frac{\pi (n\plus{}1)}{4n}}\plus{}\frac{1}{\sin \frac{\pi (n\plus{}2)}{4n}}\plus{}\cdots \plus{}\frac{1}{\sin \frac{\pi (n\plus{}n)}{4n}}\right\}$
2009 Romania National Olympiad, 2
Let $f:\mathbb{R}\rightarrow \mathbb{R}$ a continuous function such that for any $x\in \mathbb{R}$, the limit $\lim_{h\to 0} \left|\frac{f(x+h)-f(x)}{h}\right|$ exists and it is finite. Prove that in any real point, $f$ is differentiable or it has finite one-side derivates, of the same modul, but different signs.
2005 Today's Calculation Of Integral, 62
For $a>1$, let $f(a)=\frac{1}{2}\int_0^1 |ax^n-1|dx+\frac{1}{2}\ (n=1,2,\cdots)$ and let $b_n$ be the minimum value of $f(a)$ at $a>1$.
Evaluate
\[\lim_{m\to\infty} b_m\cdot b_{m+1}\cdot \cdots\cdots b_{2m}\ (m=1,2,3,\cdots)\]
2005 Today's Calculation Of Integral, 36
A sequence of polynomial $f_n(x)\ (n=0,1,2,\cdots)$ satisfies $f_0(x)=2,f_1(x)=x$,
\[f_n(x)=xf_{n-1}(x)-f_{n-2}(x),\ (n=2,3,4,\cdots)\]
Let $x_n\ (n\geqq 2)$ be the maximum real root of the equation $f_n(x)=0\ (|x|\leqq 2)$
Evaluate
\[\lim_{n\to\infty} n^2 \int_{x_n}^2 f_n(x)dx\]
2019 Jozsef Wildt International Math Competition, W. 35
Calculate$$\lim \limits_{n \to \infty}\frac{n!\left(1+\frac{1}{n}\right)^{n^2+n}}{n^{n+\frac{1}{2}}}$$
2004 Harvard-MIT Mathematics Tournament, 1
Let $f(x)=\sin(\sin(x))$. Evaluate \[ \lim_{h \to 0} \dfrac {f(x+h)-f(h)}{x} \] at $x=\pi$.
2010 Paenza, 3
Let $(x_n)_{n \in \mathbb{N}}$ be the sequence defined as $x_n = \sin(2 \pi n! e)$ for all $n \in \mathbb{N}$. Compute $\lim_{n \to \infty} x_n$.
1957 Putnam, A6
Let $a>0$, $S_1 =\ln a$ and $S_n = \sum_{i=1 }^{n-1} \ln( a- S_i )$ for $n >1.$ Show that
$$ \lim_{n \to \infty} S_n = a-1.$$
2013 Today's Calculation Of Integral, 871
Define sequences $\{a_n\},\ \{b_n\}$ by
\[a_n=\int_{-\frac {\pi}6}^{\frac{\pi}6} e^{n\sin \theta}d\theta,\ b_n=\int_{-\frac {\pi}6}^{\frac{\pi}6} e^{n\sin \theta}\cos \theta d\theta\ (n=1,\ 2,\ 3,\ \cdots).\]
(1) Find $b_n$.
(2) Prove that for each $n$, $b_n\leq a_n\leq \frac 2{\sqrt{3}}b_n.$
(3) Find $\lim_{n\to\infty} \frac 1{n}\ln (na_n).$
2014 China Team Selection Test, 5
Let $a_1<a_2<...<a_t$ be $t$ given positive integers where no three form an arithmetic progression. For $k=t,t+1,...$ define $a_{k+1}$ to be the smallest positive integer larger than $a_k$ satisfying the condition that no three of $a_1,a_2,...,a_{k+1}$ form an arithmetic progression. For any $x\in\mathbb{R}^+$ define $A(x)$ to be the number of terms in $\{a_i\}_{i\ge 1}$ that are at most $x$. Show that there exist $c>1$ and $K>0$ such that $A(x)\ge c\sqrt{x}$ for any $x>K$.
2013 Today's Calculation Of Integral, 899
Find the limit as below.
\[\lim_{n\to\infty} \frac{(1^2+2^2+\cdots +n^2)(1^3+2^3+\cdots +n^3)(1^4+2^4+\cdots +n^4)}{(1^5+2^5+\cdots +n^5)^2}\]
2019 Jozsef Wildt International Math Competition, W. 21
Let $f$ be a continuously differentiable function on $[0, 1]$ and $m \in \mathbb{N}$. Let $A = f(1)$ and let $B=\int \limits_{0}^1 x^{-\frac{1}{m}}f(x)dx$. Calculate $$\lim \limits_{n \to \infty} n\left(\int \limits_{0}^1 f(x)dx-\sum \limits_{k=1}^n \left(\frac{k^m}{n^m}-\frac{(k-1)^m}{n^m}\right)f\left(\frac{(k-1)^m}{n^m}\right)\right)$$in terms of $A$ and $B$.
2022 District Olympiad, P3
Let $(x_n)_{n\geq 1}$ be the sequence defined recursively as such: \[x_1=1, \ x_{n+1}=\frac{x_1}{n+1}+\frac{x_2}{n+2}+\cdots+\frac{x_n}{2n} \ \forall n\geq 1.\]Consider the sequence $(y_n)_{n\geq 1}$ such that $y_n=(x_1^2+x_2^2+\cdots x_n^2)/n$ for all $n\geq 1.$ Prove that
[list=a]
[*]$x_{n+1}^2<y_n/2$ and $y_{n+1}<(2n+1)/(2n+2)\cdot y_n$ for all $n\geq 1;$
[*]$\lim_{n\to\infty}x_n=0.$
[/list]
1989 IMO Longlists, 17
Let $ a \in \mathbb{R}, 0 < a < 1,$ and $ f$ a continuous function on $ [0, 1]$ satisfying $ f(0) \equal{} 0, f(1) \equal{} 1,$ and
\[ f \left( \frac{x\plus{}y}{2} \right) \equal{} (1\minus{}a) f(x) \plus{} a f(y) \quad \forall x,y \in [0,1] \text{ with } x \leq y.\]
Determine $ f \left( \frac{1}{7} \right).$