This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 837

2006 Moldova National Olympiad, 11.1

Let $n\in\mathbb{N}^*$. Prove that \[ \lim_{x\to 0}\frac{ \displaystyle (1+x^2)^{n+1}-\prod_{k=1}^n\cos kx}{ \displaystyle x\sum_{k=1}^n\sin kx}=\frac{2n^2+n+12}{6n}. \]

2009 Albania Team Selection Test, 2

Find all the functions $ f :\mathbb{R}\mapsto\mathbb{R} $ with the following property: $ \forall x$ $f(x)= f(x/2) + (x/2)f'(x)$

2010 Paenza, 3

Let $(x_n)_{n \in \mathbb{N}}$ be the sequence defined as $x_n = \sin(2 \pi n! e)$ for all $n \in \mathbb{N}$. Compute $\lim_{n \to \infty} x_n$.

2007 Today's Calculation Of Integral, 229

Find $ \lim_{a\rightarrow \plus{} \infty} \frac {\int_0^a \sin ^ 4 x\ dx}{a}$.

2007 Princeton University Math Competition, 4

Tags: limit
Let $a_{n+1} = \frac{4}{7}a_n + \frac{3}{7}a_{n-1}$ and $a_0 = 1$, $a_1 = 2$. Find $\lim_{n \to \infty} a_n$.

1954 Putnam, B7

Tags: limit , exponential
Let $a>0$. Show that $$ \lim_{n \to \infty} \sum_{s=1}^{n} \left( \frac{a+s}{n} \right)^{n}$$ lies between $e^a$ and $e^{a+1}.$

2020 Jozsef Wildt International Math Competition, W21

Evaluate $$\lim_{n\to\infty}\left(\frac{1+\frac13+\ldots+\frac1{2n+1}}{\ln\sqrt n}\right)^{\ln\sqrt n}$$ [i]Proposed by Ángel Plaza[/i]

2005 Iran MO (3rd Round), 1

Tags: rotation , limit , geometry
An airplane wants to go from a point on the equator, and at each moment it will go to the northeast with speed $v$. Suppose the radius of earth is $R$. a) Will the airplane reach to the north pole? If yes how long it will take to reach the north pole? b) Will the airplne rotate finitely many times around the north pole? If yes how many times?

1958 November Putnam, B4

Let $C$ be a real number, and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a three times differentiable function such that $$ \lim_{x \to \infty} f(x)=C, \;\; \; \lim_{x \to \infty} f'''(x)=0.$$ Prove that $$ \lim_{x \to \infty} f'(x) =0 \;\; \text{and} \;\; \lim_{x \to \infty} f''(x)=0.$$

2020 LIMIT Category 1, 16

A box contains $28$ red balls, $20$ green balls, $19$ yellow balls, $13$ blue balls, $11$ white balls and $9$ black balls. What is the minimum number of balls that must be drawn from the box without replacement to guarantee that atleast $15$ balls of a single colour will be drawn?

2013 Today's Calculation Of Integral, 863

For $0<t\leq 1$, let $F(t)=\frac{1}{t}\int_0^{\frac{\pi}{2}t} |\cos 2x|\ dx.$ (1) Find $\lim_{t\rightarrow 0} F(t).$ (2) Find the range of $t$ such that $F(t)\geq 1.$

Today's calculation of integrals, 877

Let $f(x)=\lim_{n\to\infty} \frac{\sin^{n+2}x+\cos^{n+2}x}{\sin^n x+\cos^n x}$ for $0\leq x\leq \frac{\pi}2.$ Evaluate $\int_0^{\frac{\pi}2} f(x)\ dx.$

2011 Today's Calculation Of Integral, 768

Let $r$ be a real such that $0<r\leq 1$. Denote by $V(r)$ the volume of the solid formed by all points of $(x,\ y,\ z)$ satisfying \[x^2+y^2+z^2\leq 1,\ x^2+y^2\leq r^2\] in $xyz$-space. (1) Find $V(r)$. (2) Find $\lim_{r\rightarrow 1-0} \frac{V(1)-V(r)}{(1-r)^{\frac 32}}.$ (3) Find $\lim_{r\rightarrow +0} \frac{V(r)}{r^2}.$

2004 Nicolae Coculescu, 4

Let $ f:\mathbb{R}\longrightarrow\mathbb{R} $ be a continuous function having a primitive $ F $ having the property that $ f-F $ is positive globally. Calculate $ \lim_{x\to\infty } f(x) . $ [i]Florian Dumitrel[/i]

2012 Pre-Preparation Course Examination, 2

Suppose that $\lim_{n\to \infty} a_n=a$ and $\lim_{n\to \infty} b_n=b$. Prove that $\lim_{n\to \infty}\frac{1}{n}(a_1b_n+a_2b_{n-1}+...+a_nb_1)=ab$.

2005 Today's Calculation Of Integral, 90

Find $\lim_{n\to\infty} \left(\frac{_{3n}C_n}{_{2n}C_n}\right)^{\frac{1}{n}}$ where $_iC_j$ is a binominal coefficient which means $\frac{i\cdot (i-1)\cdots(i-j+1)}{j\cdot (j-1)\cdots 2\cdot 1}$.

2003 Romania National Olympiad, 4

$ i(L) $ denotes the number of multiplicative binary operations over the set of elements of the finite additive group $ L $ such that the set of elements of $ L, $ along with these additive and multiplicative operations, form a ring. Prove that [b]a)[/b] $ i\left( \mathbb{Z}_{12} \right) =4. $ [b]b)[/b] $ i(A\times B)\ge i(A)i(B) , $ for any two finite commutative groups $ B $ and $ A. $ [b]c)[/b] there exist two sequences $ \left( G_k \right)_{k\ge 1} ,\left( H_k \right)_{k\ge 1} $ of finite commutative groups such that $$ \lim_{k\to\infty }\frac{\# G_k }{i\left( G_k \right)} =0 $$ and $$ \lim_{k\to\infty }\frac{\# H_k }{i\left( H_k \right)} =\infty. $$ [i]Barbu Berceanu[/i]

2020 LIMIT Category 2, 16

The $n^{th}$ derivative of a function $f(x)$ (if it exists) is denoted by $f^{(n)}(x) $. Let $f(x)=\frac{e^x}{x}$. Suppose $f$ is differentiable infinitely many times in $(0,\infty) $. Then find $\lim_{n \to \infty}\frac{f^{(2n)}1}{(2n)!}$

2007 Today's Calculation Of Integral, 183

Let $n\geq 2$ be integer. On a plane there are $n+2$ points $O,\ P_{0},\ P_{1},\ \cdots P_{n}$ which satisfy the following conditions as follows. [1] $\angle{P_{k-1}OP_{k}}=\frac{\pi}{n}\ (1\leq k\leq n),\ \angle{OP_{k-1}P_{k}}=\angle{OP_{0}P_{1}}\ (2\leq k\leq n).$ [2] $\overline{OP_{0}}=1,\ \overline{OP_{1}}=1+\frac{1}{n}.$ Find $\lim_{n\to\infty}\sum_{k=1}^{n}\overline{P_{k-1}P_{k}}.$

1966 Swedish Mathematical Competition, 5

Let $f(r)$ be the number of lattice points inside the circle radius $r$, center the origin. Show that $\lim_{r\to \infty} \frac{f(r)}{r^2}$ exists and find it. If the limit is $k$, put $g(r) = f(r) - kr^2$. Is it true that $\lim_{r\to \infty} \frac{g(r)}{r^h} = 0$ for any $h < 2$?

1997 VJIMC, Problem 4-M

Find all real numbers $a>0$ for which the series $$\sum_{n=1}^\infty\frac{a^{f(n)}}{n^2}$$is convergent; $f(n)$ denotes the number of $0$'s in the decimal expansion of $f$.

2006 ISI B.Stat Entrance Exam, 6

(a) Let $f(x)=x-xe^{-\frac1x}, \ \ x>0$. Show that $f(x)$ is an increasing function on $(0,\infty)$, and $\lim_{x\to\infty} f(x)=1$. (b) Using part (a) or otherwise, draw graphs of $y=x-1, y=x, y=x+1$, and $y=xe^{-\frac{1}{|x|}}$ for $-\infty<x<\infty$ using the same $X$ and $Y$ axes.

2019 Mathematical Talent Reward Programme, MCQ: P 6

Tags: limit
Find the limit $\lim \limits_{n \to \infty} \sin{n!}$ [list=1] [*] 1 [*] 0 [*] $\frac{\pi}{4}$ [*] None of the above [/list]

2010 Today's Calculation Of Integral, 598

For a constant $a$, denote $C(a)$ the part $x\geq 1$ of the curve $y=\sqrt{x^2-1}+\frac{a}{x}$. (1) Find the maximum value $a_0$ of $a$ such that $C(a)$ is contained to lower part of $y=x$, or $y<x$. (2) For $0<\theta <\frac{\pi}{2}$, find the volume $V(\theta)$ of the solid $V$ obtained by revoloving the figure bounded by $C(a_0)$ and three lines $y=x,\ x=1,\ x=\frac{1}{\cos \theta}$ about the $x$-axis. (3) Find $\lim_{\theta \rightarrow \frac{\pi}{2}-0} V(\theta)$. 1992 Tokyo University entrance exam/Science, 2nd exam

1994 Putnam, 5

Tags: limit
Let $(r_n)_{n\ge 0}$ be a sequence of positive real numbers such that $\lim_{n\to \infty} r_n = 0$. Let $S$ be the set of numbers representable as a sum \[ r_{i_1} + r_{i_2} +\cdots + r_{i_{1994}} ,\] with $i_1 < i_2 < \cdots< i_{1994}.$ Show that every nonempty interval $(a, b)$ contains a nonempty subinterval $(c, d)$ that does not intersect $S$.