This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 837

2020 LIMIT Category 2, 12

Tags: gcd , number theory , limit
Let $A$ be the set $\{k^{19}-k: 1<k<20, k\in N\}$. Let $G$ be the GCD of all elements of $A$. Then the value of $G$ is?

1972 Canada National Olympiad, 7

a) Prove that the values of $x$ for which $x=(x^2+1)/198$ lie between $1/198$ and $197.99494949\cdots$. b) Use the result of problem a) to prove that $\sqrt{2}<1.41\overline{421356}$. c) Is it true that $\sqrt{2}<1.41421356$?

2020 LIMIT Category 2, 10

In a triangle $\triangle XYZ$, $\tan(x)\tan(z)=2$, $\tan(y)\tan(z)=18$. Then what is $\tan^2(z)$?

1999 Harvard-MIT Mathematics Tournament, 1

Tags: limit
Start with an angle of $60^\circ$ and bisect it, then bisect the lower $30^\circ$ angle, then the upper $15^\circ$ angle, and so on, always alternating between the upper and lower of the previous two angles constructed. This process approaches a limiting line that divides the original $60^\circ$ angle into two angles. Find the measure (degrees) of the smaller angle.

2014 Math Prize For Girls Problems, 19

Let $n$ be a positive integer. Let $(a, b, c)$ be a random ordered triple of nonnegative integers such that $a + b + c = n$, chosen uniformly at random from among all such triples. Let $M_n$ be the expected value (average value) of the largest of $a$, $b$, and $c$. As $n$ approaches infinity, what value does $\frac{M_n}{n}$ approach?

2007 Mathematics for Its Sake, 2

Let $ \left( a_n \right)_{n\ge 1} $ be an arithmetic progression of positive real numbers, and $ m $ be a natural number. Calculate: [b]a)[/b] $ \lim_{n\to\infty } \frac{1}{n^{2m+2}} \sum_{1\le i<j\le n} a_i^ma_j^m $ [b]b)[/b] $ \lim_{n\to\infty } \frac{1}{a_n^{2m+2}} \sum_{1\le i<j\le n} a_i^ma_j^m $ [i]Dumitru Acu[/i]

1952 Miklós Schweitzer, 7

A point $ P$ is performing a random walk on the $ X$-axis. At the instant $ t\equal{}0$, $ P$ is at a point $ x_0$ ($ |x_0|\le N$, where $ x_0$ and $ N$ denote integers, $ N>0$). If at an instant $ t$ ($ t$ being a nonnegative integer), $ P$ is at a point of $ x$ integer abscissa and $ |x|<N$, then by the instant $ t\plus{}1$ it reaches either the point $ x\plus{}1$ or the point $ x\minus{}1$, each with probability $ \frac12$. If at the instant $ t$, $ P$ is at the point $ x\equal{}N$ [$ x\equal{}\minus{}N$], then by the instant $ t\plus{}1$ it is certain to reach the point $ N\minus{}1$ [$ \minus{}N\plus{}1$]. Denote by $ P_k(t)$ the probability of $ P$ being at $ x\equal{}k$ at instant $ t$ ($ k$ is an integer). Find $ \lim_{t\to \infty}P_{k}(2t)$ and $ \lim_{t\to \infty}P_k(2t\plus{}1)$ for every fixed $ k$.

1984 Putnam, B6

Tags: limit , geometry
A sequence of convex polygons $(P_n),n\ge0,$ is defined inductively as follows. $P_0$ is an equilateral triangle with side length $1$. Once $P_n$ has been determined, its sides are trisected; the vertices of $P_{n+1}$ are the interior trisection points of the sides of $P_n$. Express $\lim_{n\to\infty}[P_n]$ in the form $\frac{\sqrt a}b$, where $a,b$ are integers.

2001 Junior Balkan Team Selection Tests - Romania, 3

Let $n\ge 2$ be a positive integer. Find the positive integers $x$ \[\sqrt{x+\sqrt{x+\ldots +\sqrt{x}}}<n \] for any number of radicals.

1964 Putnam, B3

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function with the following property: for all $\alpha \in \mathbb{R}_{>0}$, the sequence $(a_n)_{n \in \mathbb{N}}$ defined as $a_n = f(n\alpha)$ satisfies $\lim_{n \to \infty} a_n = 0$. Is it necessarily true that $\lim_{x \to +\infty} f(x) = 0$?

2012 Today's Calculation Of Integral, 819

For real numbers $a,\ b$ with $0\leq a\leq \pi,\ a<b$, let $I(a,\ b)=\int_{a}^{b} e^{-x} \sin x\ dx.$ Determine the value of $a$ such that $\lim_{b\rightarrow \infty} I(a,\ b)=0.$

2010 Today's Calculation Of Integral, 654

A function $f(x)$ defined in $x\geq 0$ satisfies $\lim_{x\to\infty} \frac{f(x)}{x}=1$. Find $\int_0^{\infty} \{f(x)-f'(x)\}e^{-x}dx$. [i]1997 Hokkaido University entrance exam/Science[/i]

2018 Ramnicean Hope, 2

Let be a sequence $ \left( x_n \right)_{n\ge 0} $ with $ x_0\in (0,1) $ and defined as $$ 2x_n=x_{n-1}+\sqrt{3-3x_{n-1}^2} . $$ Prove that this sequence is bounded and periodic. Moreover, find $ x_0 $ for which this sequence is convergent. [i]Ovidiu Țâțan[/i]

2013 Today's Calculation Of Integral, 877

Let $f(x)=\lim_{n\to\infty} \frac{\sin^{n+2}x+\cos^{n+2}x}{\sin^n x+\cos^n x}$ for $0\leq x\leq \frac{\pi}2.$ Evaluate $\int_0^{\frac{\pi}2} f(x)\ dx.$

1987 IMO Longlists, 76

Given two sequences of positive numbers $\{a_k\}$ and $\{b_k\} \ (k \in \mathbb N)$ such that: [b](i)[/b] $a_k < b_k,$ [b](ii) [/b] $\cos a_kx + \cos b_kx \geq -\frac 1k $ for all $k \in \mathbb N$ and $x \in \mathbb R,$ prove the existence of $\lim_{k \to \infty} \frac{a_k}{b_k}$ and find this limit.

2020 LIMIT Category 1, 11

Tags: limit , geometry
In $\triangle ABC$, $\angle A=30^{\circ}$, $BC=13$. Given $2$ circles $\gamma_1, \gamma_2$ ith radius $r_1,r_2$ contain $A$ and touch $BC$ at $B$ and $C$ respectively. Find $r_1r_2$.

2024 ISI Entrance UGB, P4

Tags: calculus , limit , function
Let $f: \mathbb R \to \mathbb R$ be a function which is differentiable at $0$. Define another function $g: \mathbb R \to \mathbb R$ as follows: $$g(x) = \begin{cases} f(x)\sin\left(\frac 1x\right) ~ &\text{if} ~ x \neq 0 \\ 0 &\text{if} ~ x = 0. \end{cases}$$ Suppose that $g$ is also differentiable at $0$. Prove that \[g'(0) = f'(0) = f(0) = g(0) = 0.\]

1957 Putnam, B2

In order to determine $\frac{1}{A}$ for $A>0$, one can use the iteration $X_{k+1}=X_{k}(2-AX_{k}),$ where $X_0$ is a selected starting value. Find the limitation, if any, on the starting value $X_0$ so that the above iteration converges to $\frac{1}{A}.$

Gheorghe Țițeica 2025, P3

Let $(a_n)_{n\geq 0}$ be a sequence defined by $a_0\geq 0$ and the recurrence relation $$a_{n+1}=\frac{a_n^2-1}{n+1},$$ for all $n\geq 0$. Prove that here exists a real number $a> 0$ such that: [list] [*] if $a_0\geq a,$ $\lim_{n\rightarrow\infty}a_n = \infty$; [*] if $a_0\in [0,a),$ $\lim_{n\rightarrow\infty}a_n = 0$.

1992 Dutch Mathematical Olympiad, 5

Tags: algebra , limit
We consider regular $ n$-gons with a fixed circumference $ 4$. Let $ r_n$ and $ a_n$ respectively be the distances from the center of such an $ n$-gon to a vertex and to an edge. $ (a)$ Determine $ a_4,r_4,a_8,r_8$. $ (b)$ Give an appropriate interpretation for $ a_2$ and $ r_2$ $ (c)$ Prove that $ a_{2n}\equal{}\frac{1}{2} (a_n\plus{}r_n)$ and $ r_{2n}\equal{}\sqrt{a_2n r_n}.$ $ (d)$ Define $ u_0\equal{}0, u_1\equal{}1$ and $ u_n\equal{}\frac{1}{2}(u_{n\minus{}2}\plus{}u_{n\minus{}1})$ for $ n$ even or $ u_n\equal{}\sqrt{u_{n\minus{}2} u_{n\minus{}1}}$ for $ n$ odd. Determine $ \displaystyle\lim_{n\to\infty}u_n$.

2020 LIMIT Category 2, 15

How many integer pairs $(x,y)$ satisfies $x^2+y^2=9999(x-y)$?

1958 November Putnam, B4

Let $C$ be a real number, and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a three times differentiable function such that $$ \lim_{x \to \infty} f(x)=C, \;\; \; \lim_{x \to \infty} f'''(x)=0.$$ Prove that $$ \lim_{x \to \infty} f'(x) =0 \;\; \text{and} \;\; \lim_{x \to \infty} f''(x)=0.$$

2002 Iran MO (3rd Round), 2

Tags: function , limit , algebra
$f: \mathbb R\longrightarrow\mathbb R^{+}$ is a non-decreasing function. Prove that there is a point $a\in\mathbb R$ that \[f(a+\frac1{f(a)})<2f(a)\]

2002 Tournament Of Towns, 2

Tags: algebra , limit
Does there exist points $A,B$ on the curve $y=x^3$ and on $y=x^3+|x|+1$ respectively such that distance between $A,B$ is less than $\frac{1}{100}$ ?

1998 Vietnam National Olympiad, 1

Let $a\geq 1$ be a real number. Put $x_{1}=a,x_{n+1}=1+\ln{(\frac{x_{n}^{2}}{1+\ln{x_{n}}})}(n=1,2,...)$. Prove that the sequence $\{x_{n}\}$ converges and find its limit.