This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 837

2000 JBMO ShortLists, 11

Prove that for any integer $n$ one can find integers $a$ and $b$ such that \[n=\left[ a\sqrt{2}\right]+\left[ b\sqrt{3}\right] \]

2006 Grigore Moisil Urziceni, 1

Tags: limit , sequence
[b]a)[/b] $ \lim_{n\to\infty } \sum_{j=1}^n\frac{n}{n^2+n+j} =1 $ [b]b)[/b] $ \lim_{n\to\infty } \left( n- \sum_{j=1}^n\frac{n^2}{n^2+n+j} \right) =3/2 $ [i]Cristinel Mortici[/i]

2014 District Olympiad, 1

For each positive integer $n$ we consider the function $f_{n}:[0,n]\rightarrow{\mathbb{R}}$ defined by $f_{n}(x)=\arctan{\left(\left\lfloor x\right\rfloor \right)} $, where $\left\lfloor x\right\rfloor $ denotes the floor of the real number $x$. Prove that $f_{n}$ is a Riemann Integrable function and find $\underset{n\rightarrow\infty}{\lim}\frac{1}{n}\int_{0}^{n}f_{n}(x)\mathrm{d}x.$

2019 Jozsef Wildt International Math Competition, W. 11

Tags: sequence , limit
Let $(s_n)_{n\geq 1}$ be a sequence given by $s_n=-2\sqrt{n}+\sum \limits_{k=1}^n\frac{1}{\sqrt{k}}$ with $\lim \limits_{n \to \infty}s_n=s=$Ioachimescu constant and $(a_n)_{n\geq 1}$ , $(b_n)_{n\geq 1}$ be a positive real sequences such that $$\lim \limits_{n\to \infty}\frac{a_{n+1}}{na_n}=a\in \mathbb{R}^*_+, \lim \limits_{n\to \infty}\frac{b_{n+1}}{b_n\sqrt{n}}=b\in \mathbb{R}^*_+$$Compute$$\lim \limits_{n\to \infty}\left(1+e^{s_n}-e^{s_{n+1}}\right)^{\sqrt[n]{a_nb_n}}$$

2024 VJIMC, 3

Let $a_1>0$ and for $n \ge 1$ define \[a_{n+1}=a_n+\frac{1}{a_1+a_2+\dots+a_n}.\] Prove that \[\lim_{n \to \infty} \frac{a_n^2}{\ln n}=2.\]

1965 Putnam, B1

Evaluate $ \lim_{n\to\infty} \int_0^1 \int_0^1 \cdots \int_0^1 \cos ^ 2 \left\{\frac{\pi}{2n}(x_1\plus{}x_2\plus{}\cdots \plus{}x_n)\right\} dx_1dx_2\cdots dx_n.$

2008 Putnam, A1

Let $ f: \mathbb{R}^2\to\mathbb{R}$ be a function such that $ f(x,y)\plus{}f(y,z)\plus{}f(z,x)\equal{}0$ for real numbers $ x,y,$ and $ z.$ Prove that there exists a function $ g: \mathbb{R}\to\mathbb{R}$ such that $ f(x,y)\equal{}g(x)\minus{}g(y)$ for all real numbers $ x$ and $ y.$

2016 Romania National Olympiad, 1

Prove that there exists an unique sequence $ \left( c_n \right)_{n\ge 1} $ of real numbers from the interval $ (0,1) $ such that$$ \int_0^1 \frac{dx}{1+x^m} =\frac{1}{1+c_m^m } , $$ for all natural numbers $ m, $ and calculate $ \lim_{k\to\infty } kc_k^k. $ [i]Radu Pop[/i]

2016 BMT Spring, 19

Regular tetrahedron $P_1P_2P_3P_4$ has side length $1$. Define $P_i$ for $i > 4$ to be the centroid of tetrahedron $P_{i-1}P_{i-2}P_{i-3}P_{i-4}$, and $P_{ \infty} = \lim_{n\to \infty} P_n$. What is the length of $P_5P_{ \infty}$?

1992 Baltic Way, 12

Tags: function , limit , algebra
Let $ N$ denote the set of natural numbers. Let $ \phi: N\rightarrow N$ be a bijective function and assume that there exists a finite limit \[ \lim_{n\rightarrow\infty}\frac{\phi(n)}{n}\equal{}L. \] What are the possible values of $ L$?

2005 Today's Calculation Of Integral, 31

Evaluate \[\lim_{n\to\infty} \int_0^{\pi} x^2 |\sin nx| dx\]

2003 Tuymaada Olympiad, 4

Find all continuous functions $f(x)$ defined for all $x>0$ such that for every $x$, $y > 0$ \[ f\left(x+{1\over x}\right)+f\left(y+{1\over y}\right)= f\left(x+{1\over y}\right)+f\left(y+{1\over x}\right) . \] [i]Proposed by F. Petrov[/i]

2005 Today's Calculation Of Integral, 85

Evaluate \[\lim_{n\to\infty} \int_0^{\frac{\pi}{2}} \frac{[n\sin x]}{n}\ dx\] where $ [x] $ is the integer equal to $ x $ or less than $ x $.

2013 Vietnam National Olympiad, 2

Tags: algebra , function , limit
Define a sequence $\{a_n\}$ as: $\left\{\begin{aligned}& a_1=1 \\ & a_{n+1}=3-\frac{a_{n}+2}{2^{a_{n}}}\ \ \text{for} \ n\geq 1.\end{aligned}\right.$ Prove that this sequence has a finite limit as $n\to+\infty$ . Also determine the limit.

2011 Today's Calculation Of Integral, 686

Let $L$ be a positive constant. For a point $P(t,\ 0)$ on the positive part of the $x$ axis on the coordinate plane, denote $Q(u(t),\ v(t))$ the point at which the point reach starting from $P$ proceeds by distance $L$ in counter-clockwise on the perimeter of a circle passing the point $P$ with center $O$. (1) Find $u(t),\ v(t)$. (2) For real number $a$ with $0<a<1$, find $f(a)=\int_a^1 \sqrt{\{u'(t)\}^2+\{v'(t)\}^2}\ dt$. (3) Find $\lim_{a\rightarrow +0} \frac{f(a)}{\ln a}$. [i]2011 Tokyo University entrance exam/Science, Problem 3[/i]

2024 CIIM, 4

Given the points $O = (0, 0)$ and $A = (2024, -2024)$ in the plane. For any positive integer $n$, Damian draws all the points with integer coordinates $B_{i,j} = (i, j)$ with $0 \leq i, j \leq n$ and calculates the area of each triangle $OAB_{i,j}$. Let $S(n)$ denote the sum of the $(n+1)^2$ areas calculated above. Find the following limit: \[ \lim_{n \to \infty} \frac{S(n)}{n^3}. \]

2013 Today's Calculation Of Integral, 896

Given sequences $a_n=\frac{1}{n}{\sqrt[n] {_{2n}P_n}},\ b_n=\frac{1}{n^2}{\sqrt[n] {_{4n}P_{2n}}}$ and $c_n=\sqrt[n]{\frac{_{8n}P_{4n}}{_{6n}P_{4n}}}$, find $\lim_{n\to\infty} a_n,\ \lim_{n\to\infty} b_n$and $\lim_{n\to\infty} c_n.$

1982 IMO, 3

Consider infinite sequences $\{x_n\}$ of positive reals such that $x_0=1$ and $x_0\ge x_1\ge x_2\ge\ldots$. [b]a)[/b] Prove that for every such sequence there is an $n\ge1$ such that: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}\ge3.999. \] [b]b)[/b] Find such a sequence such that for all $n$: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}<4. \]

2022 CIIM, 5

Define in the plane the sequence of vectors $v_1, v_2, \ldots$ with initial values $v_1 = (1, 0)$, $v_2 = (-1/\sqrt{2}, 1/\sqrt{2})$ and satisfying the relationship $$v_n=\frac{v_{n-1}+v_{n-2}}{\lVert v_{n-1}+v_{n-2}\rVert},$$ for $n \geq 3$. Show that the sequence is convergent and determine its limit. [b]Note:[/b] The expression $\lVert v \rVert$ denotes the length of the vector $v$.

2001 Romania National Olympiad, 3

Let $f:\mathbb{R}\rightarrow[0,\infty )$ be a function with the property that $|f(x)-f(y)|\le |x-y|$ for every $x,y\in\mathbb{R}$. Show that: a) If $\lim_{n\rightarrow \infty} f(x+n)=\infty$ for every $x\in\mathbb{R}$, then $\lim_{x\rightarrow\infty}=\infty$. b) If $\lim_{n\rightarrow \infty} f(x+n)=\alpha ,\alpha\in[0,\infty )$ for every $x\in\mathbb{R}$, then $\lim_{x\rightarrow\infty}=\alpha$.

2009 Today's Calculation Of Integral, 421

Let $ f(x) \equal{} e^{(p \plus{} 1)x} \minus{} e^x$ for real number $ p > 0$. Answer the following questions. (1) Find the value of $ x \equal{} s_p$ for which $ f(x)$ is minimal and draw the graph of $ y \equal{} f(x)$. (2) Let $ g(t) \equal{} \int_t^{t \plus{} 1} f(x)e^{t \minus{} x}\ dx$. Find the value of $ t \equal{} t_p$ for which $ g(t)$ is minimal. (3) Use the fact $ 1 \plus{} \frac {p}{2}\leq \frac {e^p \minus{} 1}{p}\leq 1 \plus{} \frac {p}{2} \plus{} p^2\ (0 < p\leq 1)$ to find the limit $ \lim_{p\rightarrow \plus{}0} (t_p \minus{} s_p)$.

2023 ISI Entrance UGB, 2

Let $a_0 = \frac{1}{2}$ and $a_n$ be defined inductively by \[a_n = \sqrt{\frac{1+a_{n-1}}{2}} \text{, $n \ge 1$.} \] [list=a] [*] Show that for $n = 0,1,2, \ldots,$ \[a_n = \cos(\theta_n) \text{ for some $0 < \theta_n < \frac{\pi}{2}$, }\] and determine $\theta_n$. [*] Using (a) or otherwise, calculate \[ \lim_{n \to \infty} 4^n (1 - a_n).\] [/list]

PEN S Problems, 36

For every natural number $n$, denote $Q(n)$ the sum of the digits in the decimal representation of $n$. Prove that there are infinitely many natural numbers $k$ with $Q(3^{k})>Q(3^{k+1})$.

2009 Miklós Schweitzer, 8

Let $ \{A_n\}_{n \in \mathbb{N}}$ be a sequence of measurable subsets of the real line which covers almost every point infinitely often. Prove, that there exists a set $ B \subset \mathbb{N}$ of zero density, such that $ \{A_n\}_{n \in B}$ also covers almost every point infinitely often. (The set $ B \subset \mathbb{N}$ is of zero density if $ \lim_{n \to \infty} \frac {\#\{B \cap \{0, \dots, n \minus{} 1\}\}}{n} \equal{} 0$.)

2006 Stanford Mathematics Tournament, 15

Let $c_i$ denote the $i$th composite integer so that $\{c_i\}=4,6,8,9,...$ Compute \[\prod_{i=1}^{\infty} \dfrac{c^{2}_{i}}{c_{i}^{2}-1}\] (Hint: $\textstyle\sum^\infty_{n=1} \tfrac{1}{n^2}=\tfrac{\pi^2}{6}$)